About OMICS Group

OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year ²⁰⁰⁷ with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes ⁴⁰⁰online open access <u>scholarly journals</u> in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge
dissemination. OMICS Group also organizes 300 International dissemination. OMICS Group also organizes 300 <u>International</u> conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

About OMICS Group Conferences

OMICS Group International is ^a pioneer and leading science event organizer, which publishes around ⁴⁰⁰ open access journals and conducts over ³⁰⁰ Medical, Clinical, Engineering, Life Sciences, Phrama scientific conferences all over the globe annually with the support of more than ¹⁰⁰⁰ scientific associations and 30,000 editorial board members and 3.5 million followers toits credit.

OMICS Group has organized ⁵⁰⁰ conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

Detection of Legionella spp., L. pneumophila & L. pneumophila serogroup 1 in drinking waters

In 2nd International Congress on Bacteriology and Infectious Diseases, November 17-19, 2014, Chicago, USA

Jingrang Lu, Ph.D.

- Biohazard Assessment Research Branch
- National Exposure Research Laboratory
- U.S. Environmental Protection Agency

Legionella: waterborne pathogens

- Legionella: Gram-negative bacteria with >50 species, 70 serogroups identified and >24 associated with human infection
- Ubiquitous, but higher counts in water systems with temps of $25-42$ $^{\circ}$ C
- Environmental factors: temperature, stagnant water/biofilm/sediment, TOC, metals, biofilm and disinfectants, etc.
- Causing Legionellosis: mainly L. pneumophila:
	- Legionnaires' disease (LD): severe pneumonia
	- *V* Pontiac fever: a mild flu like illness
fice of Research and Development

Office of Research and DevelopmentNational Exposure Research Laboratory

Legionellosis

- Inhalation of Legionella-contaminated aerosols is the only reported cause of Legionellosis
- -L. pneumophila: > 90% clinical cases, serogroup (sg)1: 84% (Yu et al., 2002); USA: > 30,000 cases/y
- -Recently the incidence of observed Legionellosis has significant increase in the United States (Craun, et al 2012) and across Europe (GIDEON 2012)
- -2009-2010 Legionella spp. were responsible for 58% USA drinking water-related outbreaks (CDC 2013)
- -High fatality rate (28%: ranged from 14-46%)

Outbreaks of Legionelloses associated with drinking water from 1991 to 2010 (CDC, MMWR 1998-2011)

Water borne disease outbreaks

Current problems

Lack reliable detection and control methods for Legionella in drinking water distribution systems (DS)

Current detection/diagnostic standard procedures are non-specific, time-consuming and costly

It is hard to collect adequate and accurate data to make risk assessment (Whiley 2014) and to prevent or decrease incidences of LD

Methods used for Legionella detection

Culture, DNA-based and RNA-based methods

- **1. Culture method:** previous "gold" standard
- pros*:* viable estimates
- cons: time-consuming (>48 hr) and no-detection of viable but not culturable (VBNC) stage.

Most Legionella presumed to be present in drinking water in the VBNC stage due to low nutrient and chlorinated conditions and intracellular infection of protozoa (Chang et al. 2007, Alleron et al. 2008).

Detection methods: continue

2. DNA-based methods: PCR/qPCR

- DNA based standard detection procedures (Ratcliff et al., 1998; Templeton et al., 2003).
- ✓ 16S rRNA gene qPCR assay for *Legionella* spp.
- \checkmark mipA gene assay for L. pneumophila
- 16S rRNA gene PCR assay, clone-sequencing for species identification

Pros: time saving, specificity & sensitivity

- **Cons**: no differentiation between live and dead cells, so quantity could be overestimated.
- ❖ However, modifications are needed for previously published

assessed that their pear appoiticity and leak of appure soverate assays, due to their poor specificity and lack of enough coverage for newly added sequences.

DNA-based method: continuePCR/qPCR assays Legionella16S rRNA gene

DNA-based method: continue Test and validation for specificity and sensitivity

- **Specificity test DNA panels: Various bacterial** strains (21 genera covering 42 species), including various *Legionella* spp. and *L. pneumophila* strains.
- **Sensitivity and detection limit:**
	- spiked Lp1 into 4 matrices: molecular water, tap water, storage tank sediment and biofilm

- Validation using isolates from cooling towers, hospital water, and CDC validation samples

Two approaches for validation studies:

- 1. All assays were tested against CDC reference strains, cooling towers and tap water samples.
- 2. Positive PCR products amplified from environmental samples of storage tank sediments, hot/cold and distribution drinking water and shower water were validated through clone-sequencing process as the final step.

3. Test for RNA based assays

• Assays were designed from those previously high-upregulated, especially virulence associated genes under stressor CuO nanoparticles using microarray method (Lu et al., 2013)

RNA-based method: continue For example: assays ceg29 and rtxA

■ Some assays (*rtxA, ceg29* and *sidF*, et al.) have been used in both DNA- detection and showed very high and RNA-based specificity and sensitivity for Lp1 (Lu et al. 2013)

 13

• The assays also have been used in the evaluation of greywater on Lp.

 \blacksquare (Buse and Lu et al. 2014)

Detection limits of RNA based qPCR in tap water

- RT-QPCR has been indicated as a viable detection method for Legionella to overcome the under-/overestimated in current methods.
- However, high limit of detection for environmental sample is a hurdle for using in all environmental samples

Legionella in drinking water

- 1. In drinking water distribution system
- 2. In sediment
- 3. In biofilm
- 4. In tap water
- 5. In shower water

Examined: Quantity, Species & Variation

1. In a chlorinated distribution system

Frequency of detection (FOD) & density of *Legionella* spp. & *L. pneumophila* (Lp) in various drinking water systems

Seasonal variations

- Quantity of Legionella spp. varied seasonally and peaked in April (our study)
- In the study by While et al. (2014): peaks of seasonal distribution occurred in summer
- Seasonal variations of Legionella spp. were also found in a natural water (Tung et al. 2013), peaks occurred during summer, and coincidently, cases of Legionellosis were also found in that period.

• *Legionella* might come from treatment plant and multiple sites within drinking water distribution system

Legionella in drinking water distribution system reservoir sediments

- •• *Legionella* spp. $(66.7 \%; 5.2 \pm 5.9 \times 10^3 \text{ CE/g},$
- • Diverse Legionella spp.: 115 OTUs of 336 examined, including: L. pneumophila (33%), L. pneumophila sg1 (28%) and L. anisa

*red arrow indicates sites of detection

In drinking water biofilms

- Legionella spp. have been detected in various drinking water biofilm (Flemming et al. 2002, Keevil 2002, Lehtola et al. 2007, Gião et al. 2009, Moritz et al. 2010)
- Lp colonization's on pipe materials of copper and PVC were detected, more persistent on Cu (Lu et al. 2014)

3. In tap water (July 2010 – July 2011, Cincinnati, OH)

- Frequency of detection (FOD): 68%
- Density: 64 ± 248 CE/L
- Lp1, L. anisa, donaldsonii, L. dronzanskii
- FOD: 100%
- Density: 763±1596 CE/L
- Peaks: 1.5~7.5 \times 10³ CE/L, at Nov. 15-Dec. 15
- Lp1, L. anisa, donaldsonii, L. dronzanskii

4. In shower water (March 2012 – June 2013)

4. In shower water: continue

QMRA for critical Legionella densities in shower water

Schoen & Ashbolt (2011) Water Res 45: 5826-5836

Current approach in RT-qPCR detection

- -A protocol for Lp/Lp1 in drinking water developed included:
- \checkmark qPCR for screening samples
- \checkmark PCR-clone-sequencing for ID, if necessary
- \sqrt{RT} -qPCR for viable detection, when densities reach to $> 10⁴$ CE/L (Implement corrective action level, http://www.ewgli.org/), or even to the QMRA critical level 10 $^6-$ 10 8 CFU L⁻¹ (Shoen et al. 2011)
- Further, a RT-qPCR panel test may be applied using the developed panel assays.

Summary of Legionella in drinking water

- The detection of Legionella were completed mainly using the DNAbased qPCR method in distribution systems. The newly developed assays proved to be specific by clone-sequencing and sensitive.
- Legionella occurred in all the places investigated, but generally at low levels ($< 10³$ CE/L) and rarely $> 10⁴$ CE/L. Special attention should be paid to monitor the possible seasonal peak.
- The contamination could be from outside (initial source) or inside (secondary source: biofilm, sediments, etc.).
- *Legionella*, especially the potential pathogens: Lp and *L. anisa*, tended to occur in tap water and shower water when temperatures with 29-39 ^oC and reach high densities ($\sim 10^4$ CE/L), which might be of health risk.
- RT-qPCR method should be used to estimate viable number in DS, when high quantities of Legionella occur, in order to provide more accurate densities for QMRA of *Legionella*

Thanks to

This research was supported by EPA ORD's Safe and Sustainable Water Resources Programs.

Ann Grimm, ORD, US EPA Jay Garland, ORD, US EPA Nick Ashbolt, University of Alberta, Edmonton, CANJorge Santo Domingo, ORD, US EPA Helen Buse, CSS-Dynamac, Cincinnati, Ohio Ian Struewing, CSS-Dynamac, Cincinnati, Ohio Sharon Yelton, CSS-Dynamac, Cincinnati, Ohio

Let Us Meet Again

We welcome you all to our future conferences of OMICS Group International

Please Visit: