The influence of sulfide ion on viscosity of HPAM solution used in oil recovery and the concerning mechanisms

East China University of Science and Technology

Jinfeng Liu

21th July, 2016

Background of this research

The structure and property of HPAM

Feng Y, et al. Polymer International, 2002, 51(51):931-938

Background of this research

Viscosity reduction negatively and notably influenced the HPAM flooding effect

- **<u>Physical factors</u>**: pH, Temperature, Salinity, Shearing and etc
- **<u>Biological factors</u>**: Biodegradation ...

Background of this research

Background of this research

Li Cai-Yun et al. Journal of Hazardous Material, 2016

Na⁺ / K⁺ effect on viscosity of HPAM solution

C (mg/L) Fe²⁺ / Fe³⁺ effect on viscosity of HPAM solution

Background of this research

Principal factors impacting on HPAM viscosity

Background of this research

The influence of sulfide ions on viscosity of HPAM solution

The effect of S²⁻ on viscosity of HPAM solution prepared with simulated formation water

A: Viscosity at 72 hrs after addition of S²⁻
B: Viscosity of the 48 hrs dialysate from A
C: Viscosity of B after addition of S²⁻ for 72 hrs;
D: Viscosity of the 48 hrs dialysate from C

The influence of sulfide ions on viscosity of HPAM solution

The viscosity of HPAM solution under different concentration of S²⁻ and pH conditions

The influence of sulfide ions on viscosity of HPAM solution

Stronger influence of S^{2-} on viscosity of HPAM was observed under DO conditions than that without DO; So, this influence is proposed to be oxygen dependent.

The viscosity of HPAM solution with different concentration of S²⁻ with and without DO

The influence of sulfide ions on hydrodynamic radius of HPAM

The change in particle size of HPAM under different concentration of S²⁻ and pH conditions

The influence of sulfide ions on microstructure of HPAM

A&C: 0 ppm S²⁻ B&D: 5 ppm S²⁻

Without S²⁻ (A and C), HPAM forms a network structure, resulting in high viscosity; while S²⁻ added (B and D), the network structure is significantly damaged, thus the viscosity be greatly reduced.

The micromorphology of HPAM

The influence of sulfide ions on the structure of HPAM

The influence of sulfide ions on Mw of HPAM

The GPC analysis of HPAM before and after interaction with S²⁻

The interaction site of sulfide ions and HPAM

The ¹H NMR before and after interaction with S²⁻

The interaction site of sulfide ions and HPAM

Summary

- The viscosity of HPAM solution is sensitive to cationic ions, the sensitivity is in this order as: $Fe^{2+} > Ca^{2+} > Mg^{2+} > K^+ > Na^+$; wherein, Fe^{2+} is the most distinguish one which can significantly reduce the viscosity of HPAM solution at a concentration of 5 mg/L.
- Under sufficient oxygen, the lower the pH and the higher the temperature, the more significant the influence of S²⁻ on viscosity of HPAM solution. However, under anaerobic conditions, S²⁻ shows no or not significant effect on the viscosity.
- S²⁻ largely reduce the viscosity through destroying the network structure of HPAM in solution rather than cutting down the HPAM chain, and this action is reasonably related to the amid group of HPAM.

INTRODUCTION

Engineering Research Center of Microbial Enhanced Oil Recovery of the Ministry of Education was established in Oct. 2013, and was built based on East China University of Science and Technology. The center consists of four platforms as key Technology Development & Integration, Engineering R&D, Scaling up & Pilot Protocols, and Technology Transfer.

VISION

As one of the leading research center, it strives to attract nurture frontiers in green and sustainable technologies in microbial enhanced oil recovery, and to serve as an open platform for research, technical training, technology transfer, information sharing, and international collaboration.

MISSION

The objectives of the center are focus on cost-effective approaches for enhancement of energy recovery. The on-going tasks include (1) roles of microbial community in-situ petroleum, (2) bio-conversion of residues oils into natural gas in oil reservoirs, (3) microbial and bio-based surfactants, and (4) biofixation and bio-conversion of carbon dioxide to methane energy by geomicroorganisms in-situ oil reservoirs.

Faculty and students in our group

Biodegradation & Products

Microbial communities

Academic members (including Postdoctors)

World Congress on
Petroleum and Refinery
July 21-22, 2016 Brisbane, Australia

Thanks for your attentions

East China University of Science and Technology

21th July, 2016