About OMICS Group

OMICS Group is an amalgamation of Open Access Publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes 700+ online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 1000+ International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

OMICS International Conferences

OMICS International is a pioneer and leading science event organizer, which publishes around 700+ open access journals and conducts over 500 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 1000+ conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

Case Studies of Human Flora and Spore Contamination in Cleanrooms

Science & Solutions for Life

Agenda

- √ Case Studies in Bioburden Control
- ✓ Starting Up a New Cleanroom

Bioburden Agenda

- ✓ Operator Contamination
- Fungal Spore Contamination
- Bacterial Spore Contamination

Operator contamination

- Staphylococcus
- Propionibacterium acnes

Human Skin Flora

- Staphylococcus cleanroom outbreak
 - Source
 - Gowning Material
 - Traced back to one operator
 - Skin infection
 - Another case was from a Ton
 - Non-sterile drug product

Propionibacterium acnes

- Gowning room
 - BSL Hood
 - Sources
 - Operator with acne
 - Solution
 - » Antimicrobial Handwash
 - » Antimicrobial Bodywash

Courtesy Ann Larson

Agenda

- ✓ Operator Contamination
- ✓ Fungal Spore Contamination
- Bacterial Spore Contamination

	Microorganism	Examples		
More Resistant	Prions	Scrapie, Creutzfeld-Jacob disease, Chronic wasting disease		
	Bacterial Spores	Bacillus, Geobacillus, Clostridium		
	Protozoal Oocysts	Cryptosporidium		
	Helminth Eggs	Ascaris, Enterobius		
	Mycobacteria	Mycobacterium tuberculosis, M. terrae, M. chelonae		
	Small, Non-Enveloped Viruses	Poliovirus, Parvoviruses, Papilloma viruses		
	Protozoal Cysts	Giardia, Acanthamoeba		
	Fungal Spores	Aspergillus, Penicillium		
	Gram negative bacteria	Pseudomonas, Providencia, Escherichia		
	Vegetative Fungi and Algae	Aspergillus, Trichophyton, Candida, Chlamydomonas		
	Vegetative Helminths and Protozoa	Ascaris, Cryptosporidium, Giardia		
	Large, non-enveloped viruses	Adenoviruses, Rotaviruses		
	Gram positive bacteria	Staphylococcus, Streptococcus, Enterococcus		
Less Resistant	Enveloped viruses	HIV, Hepatitis B virus, Herpes Simplex virus		

From McDonnell, "Antisepsis, Disinfection, and Sterilization: Types, Action, and Resistance" 2007, ASM Press

Fungal Spores

- Penicillium
- Aspergillus
- Cladosporium

- Items brought into the Cleanroom
 - Bags, Boxes, Intervention Equipment, Pallets, Pallet Jacks,
 Scrubbers, Cart Wheels, Shoes, Shoe Covers
 - Raw Materials

Penicillium

- ISO-7 Cleanrooms
- Action Levels of 10 and picking up >100
 - Engineering Investigating
 - HVAC
 - Duct Work
 - HEPA Filters
 - Cooling Coils
 - Wall Coverings
 - Airflow Vents

- Entry and Exit Procedures
- Gowning Procedure
- Cart Wheels
- Construction
 - Further Investigation
 - Use of Sporicides
 - Containers in the Cleanroom
 - Coldroom Cleaning Procedures
 - Documentation
 - Assignable Cause

Penicillium

Aspergillus

- ISO-5 Cleanroom
 - Source
 - Door Kick Plate
 - High Impingement Spraying Device
- Exceeding Limits in ISO-7 areas
 - Dock Doors proximal to ISO-7 cleanroom
 - Storage room with limited control
 - No limits for mold spores
 - Limited control for incoming and outgoing items

Aspergillus Investigation

- Sporicidal usage in pass thru
- Clean and dirty area on the Dock
- Better control of gowning area
- Cart Wheel control
- Better gowning control

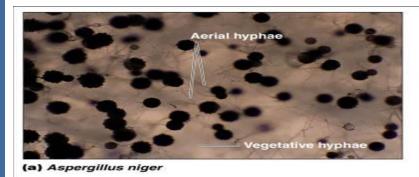
Fungi

Courtesy Dan Klein

Cleanroom Fungi

Courtesy Dan Klein

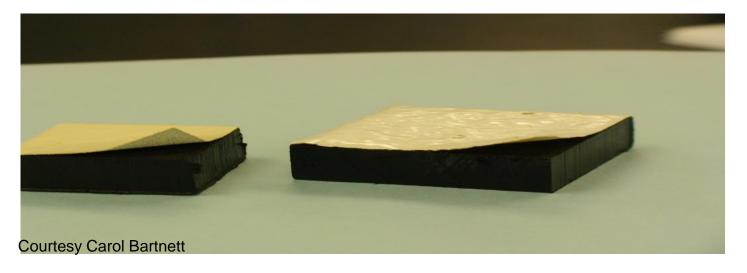
Inoculum Preparation—Fungal


STERIS

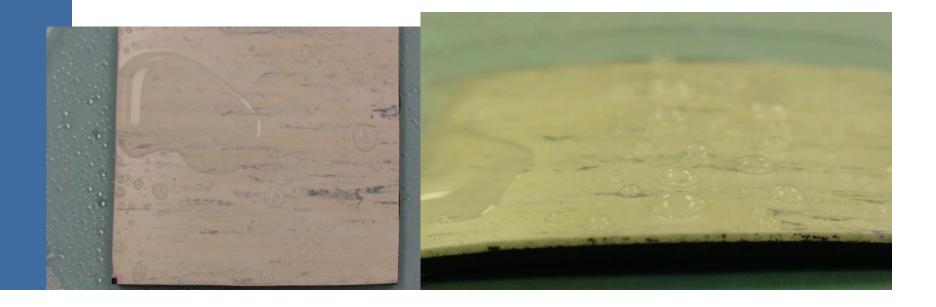
Life Sciences

Spores

Cultures need to be incubated for a sufficient length of time before harvesting spores


Courtesy Dan Klein

Surface Preparation


 Autoclaving may not be acceptable for some surfaces (Saniflex)

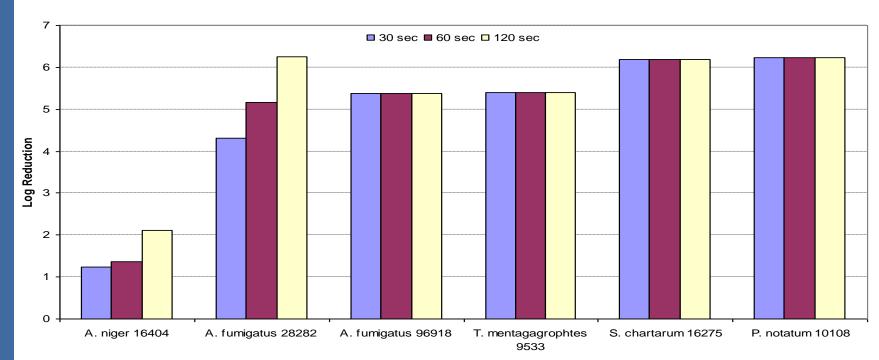
Surface Tension Issue

Cladosporium

- Elevated levels in Puerto Rico
- Common in Southern CA
 - Increase Sporicide Usage
 - Sources
 - Humidity and temperature
 - Burning of Sugar Cane fields

Efficacy (log reduction) of Low pH phenolic (Environ LpH se): (1:256 Dilution) against test microorganisms on representative surfaces

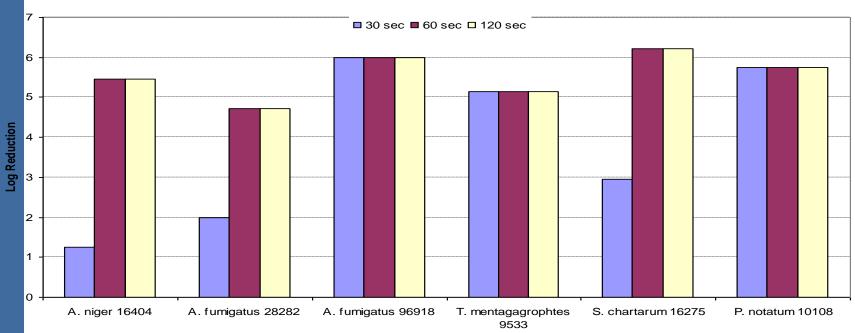
Surface	Staphylococcus epidermidis	Pseudomonas aeruginosa	Corynebacterium glutamicum	Candida albicans	Aspergillus niger	Penicillium chrysogenum
Stainless Steel	6.62	>6.10 ^b	4.18	>4.31 ^b	<3.00 ^c	4.95
Glass	6.85	6.42	5.26	>5.80 ^b	2.98	5.11
Aluminum	6.35	5.69	5.14	>3.93 ^b	<3.00c	3.48
Ероху	4.36	4.45	4.48	3.19	<3.00°	<3.00°
Enamel	>6.05 ^b	>5.72 ^b	5.45	>3.92 ^b	<3.00c	2.83
Acrylic	4.53	6.06	4.49	2.92	<3.00°	<3.0 °
Mipolam	4.36	3.87	4.29	4.37	<3.00°	3.25
Vinyl	4.08	3.68	3.93	2.61	<3.00°	2.1
Hardwood	5.18	>4.54 ^b	5.26	3.2	<3.00°	2.59
Melamine Covered Wood	>5.38 ^b	>5.64 ^b	>5.09 ^b	>5.12 ^b	3.65	3.95
Plastic	>5.73 ^b	>5.32 ^b	>5.05 b	>4.04 ^b	<3.00c	2.44
Plexiglas	>5.90 ^b	5.62	4.83	>4.40 ^b	<3.00°	3.85
Print	5.85	5.86	5.74	4.51	<3.00c	3.38
Chromium	6.55	5.95	6.63	4.08	<3.00 ^c	2.61



^a Disinfectant Efficacy = (Log MSP_(positive control) - Log MSP_(test coupons)), where MSP_(Positive Control) = Mean surviving population on positive control coupons; MSP_(test coupon) = Mean surviving population on test coupons after disinfectant treatment; ^b Each of triplicate coupons showed no growth after disinfectant treatment; ^c Each of triplicate coupons Copyright 2014 STERIS Corporations. All Rights Reserved. CONFIDENTIAL and PROPRIETARY to STERIS COPYRIDE GROWTH SHOWED TRAINS

70% IPA Efficacy Against Molds

Fungicidal Activity of 70% Isopropyl Alcohol using Time Kill Method



H2O2/PAA RTU Against Molds

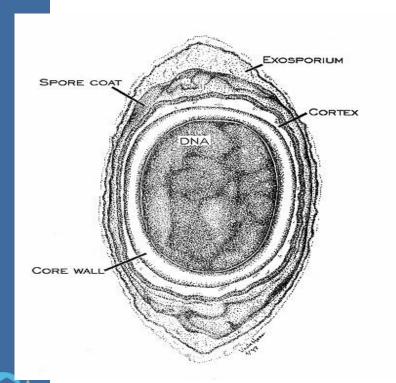
Fungicidal Activity of H2O2/PAA RTU using Time Kill Method

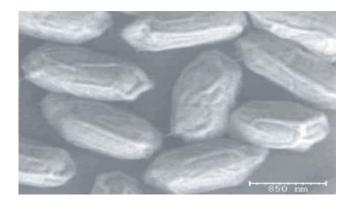
Organism

Agenda

- ✓ Operator Contamination
- ✓ Fungal Spore Contamination
- ✓ Bacterial Spore Contamination

Bacterial Spores




- Bacillus cereus
- Bacillus circulans

Bacterial Endospore

Courtesy Dan Klein

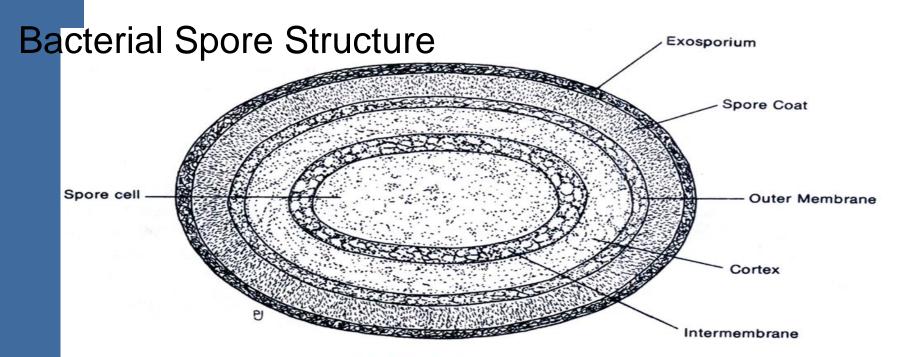
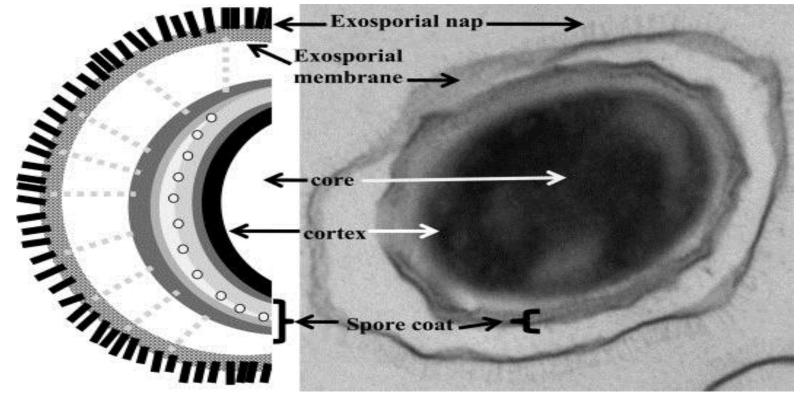


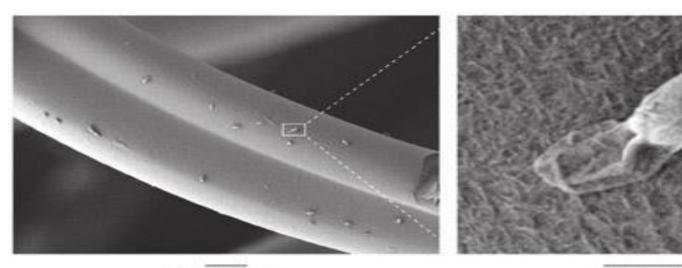
Fig. 8.1. Endospore

Bacillus cereus


- ISO-7 and ISO-8 cleanrooms
- Process Vessels
 - Source Locations
 - Cleanroom Shoe Cover
 - Fermentor
 - Process Vessels
 - ✓ The Source was a Raw Material

Exosporium – B. anthracis

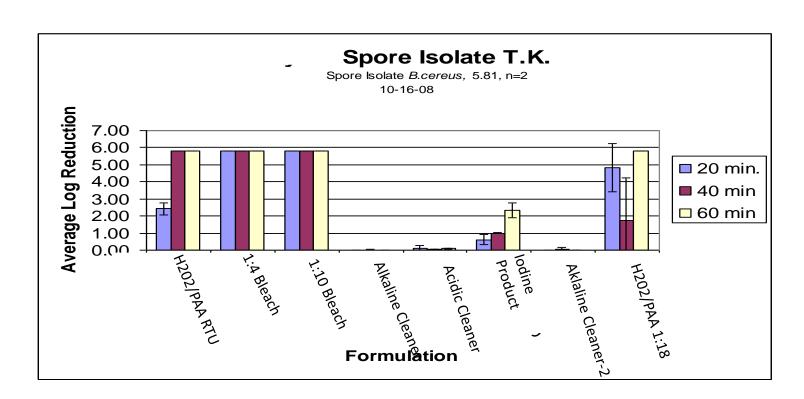
Cote CK et al. 2011. Microbes and Infection 13(14-15):1146-55.



Exosporium – *B. anthracis*

Hydrophobicity helps adhere to fibers

1 micrometer


https://www.llnl.gov/str/Sep06/Velsko.html

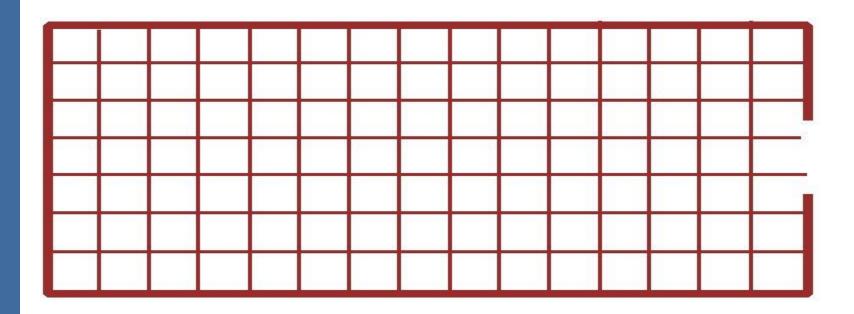
10 micrometers

Bacillus Testing

Bacillus circulans

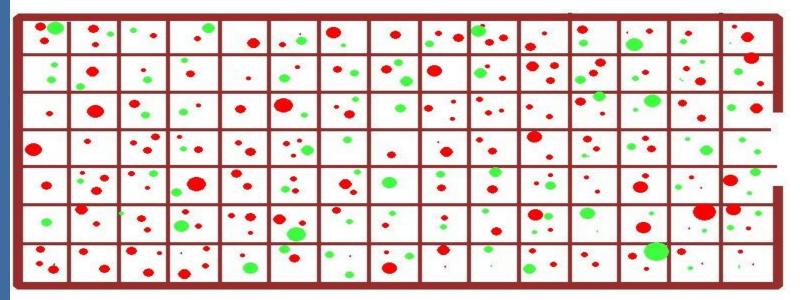
- Efficacy Testing Failures (different test methods)
 - Vinyl surfaces
 - Sent out for ID
 - Paenibacillus

STERIS


Case Study: Construction Event at Biotech Site

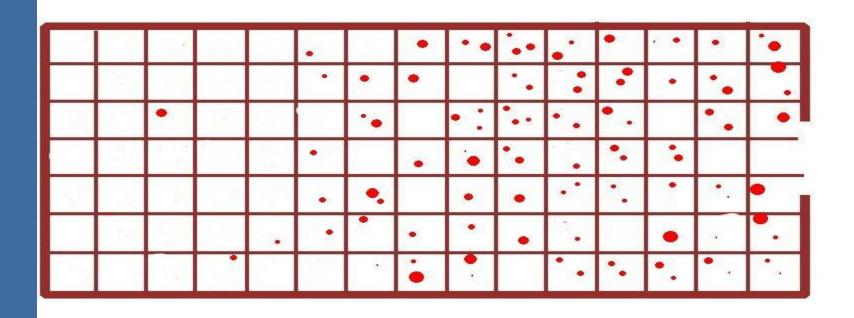
- Worst Case Events
- ☐ 9X Clean [1X Sporicide + 2X Phenolic (day 1) 2X Phenolic +1X Sporicide (day 2), 2X Phenolic +1X Sporicide (day 3)]
- □ Fogging
- VHP
- ☐ Triple Clean
 - ✓ Defined 3X Disinfectants and Sporicide
 - ✓ EM frequency (Static and Dynamic)
 - ✓ Release of the room

Cleaning and Disinfection Efficacy

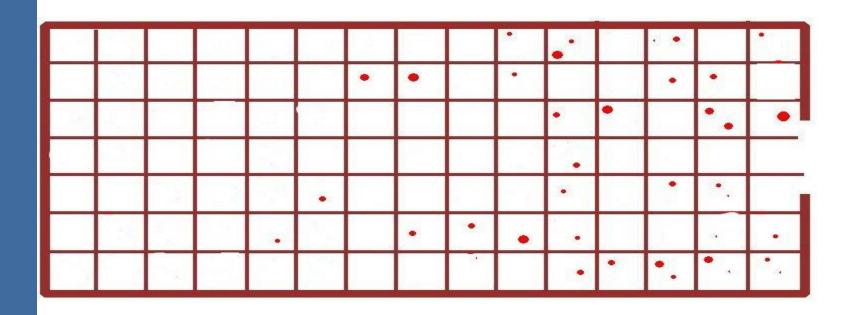


Time 0

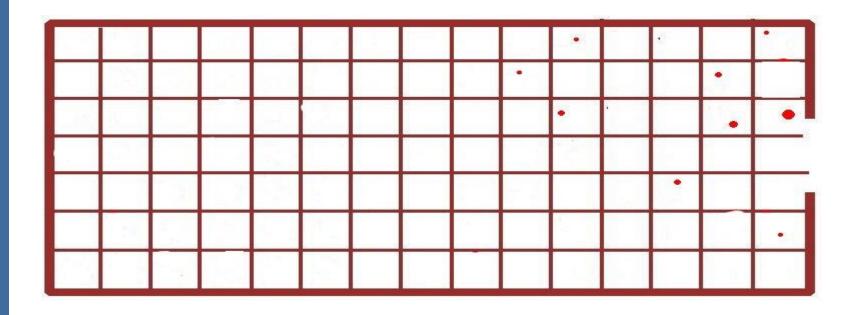
Red = Sporeformers


Green = Other

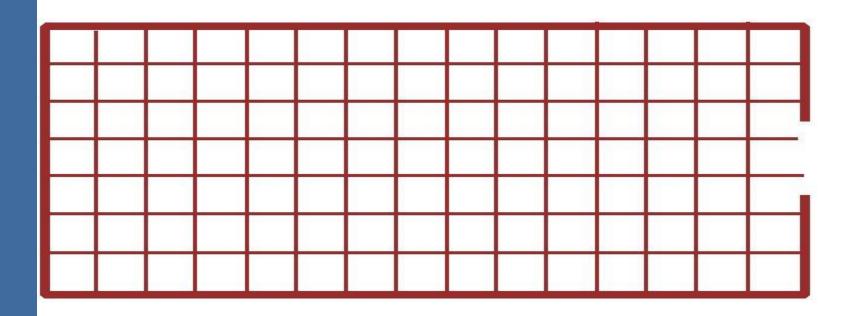
After 1X Cleaning - NO Sporicide



After 2X Cleaning − NO Sporicide STERIS



After 3X Cleaning - No Sporicide



After Sporicide

Bioburden Agenda

- Operator Contamination
- Fungal Spore Contamination
- Bacterial Spore Contamination

Summary

- Case Studies in Bioburden Control
- Starting up a New Cleanroom

Thank You for Your Time

Jim Polarine Jr. MA. jim_polarine@steris.com

Let us meet again..

We welcome you all to our future conferences of OMICS International

2nd International Conference and Expo on

Parenterals and Injectables

On

October 24-26, 2016 at Istanbul, Turkey

http://parenteralsinjectables.pharmaceuticalconferences.com/