Use of passive sampling methods to understand sources of mercury to high elevation sites in the Western United States

Jiaoyan Huang
Mae S. Gustin
Acknowledgement

- Undergraduate students at UNR
 Matthew Peckham, Douglas Yan, Travis Lyman, Musheng Alishahi, and Jennifer Arnold

- The site operators
 Jeff Morris (BISP), Cody Tingey (CGSP), Tim Forsell (CCRS), Russ Merle (PRMP), Jerry Dries (ECHO), Daren Winkelman (AGPK), and Li Zhang (AGPK), Tony Lesperance (PAVA), Ben Roberts (GBNP), and Peter Weiss-Penzias (CHALK)
Methods

- Box sampler-concentration
- Surrogate surface-dry deposition
- A 3-times correction factor
- Multiple-resistance model
- $\alpha=\beta=2$, $\alpha=\beta=10$, no canopy resistance
- Hybrid Single Particle Lagrangian Integrated Trajectory

- Probability function, $P_{i,k} = \frac{N_{i,k}}{M_{i,k}}$
Different materials and exposure times

polysulfone membranes, ICE 450
polyethersulfone membrane, Mustang S
Correlations

Overall

\[y = 0.38 x + 0.95 \]
\[r^2 = 0.43 \]
\[p < 0.01, n=109 \]

High elevation

\[y = 0.16 x + 2.0 \]
\[r^2 = 0.14 \]

Low elevation

\[y = 0.45 x + 0.41 \]
\[r^2 = 0.46 \]

Monthly "ICE450"

Bi-weekly "ICE450"

Bi-weekly "Mustang"

AGPK

BSIP

CCRS

CGSP

CHALK

GBNP

AGPK outlier
Spatial and temporal variation
Modeled and measured results

thorn shrubs sites
Probability function domain
Source regions

- **AGPK**
 - LA and MBL boxes-high elevation
 - LA, Las Vegas, MBL, and San Joaquin Valley low elevation.

- **PEAV**
 - SF all elevations
 - LA less points
Asian long range transport
Summary

- Hg amount collected on Mustang S is comparable to that on ICE 450.
- Hg dry deposition was higher at high elevation sites than at low elevation sites.
- Dry deposition uncertainties are still high and different GOM species were observed.
- Regional and long range transport sources affect Hg level at high elevation sites in the Western US.
The Influence of a Local Coal-Fired Power Plant on Ambient Mercury Concentrations

Jiaoyan Huang
Yungang Wang
Philip K. Hopke
Thomas M. Holsen
SITE MAP
INSTRUMENTS

- Tekran® 2537/1130/1135
- Trace gases instruments (CO, ozone, SO₂)
- Scanning mobility particle sizer
 - differential mobility analyzer
 - ⁸⁵Kr aerosol neutralizer
 - Condensation particle counter
- PM$_{2.5}$: tapered element oscillating microbalance (TEOM)
- Two-wavelength aethalometer
A weighted factorization problem with non-negativity constraints using known experimental uncertainties as input data thereby allowing individual treatment (scaling) of matrix elements.
Ambient Air Hg Concentration Downwind Influences

Significantly higher before than after the CFPP closure
PMF RESULTS

(1) O₃-rich

(2) Traffic

(3) Gas phase oxidation

(4) Wood combustion

(5) Nucleation

(6) CFPP
CFPP CONTRIBUTION

(a) GEM

(b) GOM

(c) PBM
CONDITIONAL PROBABILITY FUNCTION

black line: before the CFPP closure
red line: after the CFPP closure
Reactive Hg Partitioning Coefficient

\[
K_p = \frac{\text{PBM/PM}_{2.5}}{\text{GOM}}
\]

<table>
<thead>
<tr>
<th>Time period</th>
<th>slope</th>
<th>intercept</th>
<th>(r^2)</th>
<th>(K_p) (m³/µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>-1300 ± 120</td>
<td>5.0 ± 0.4</td>
<td>0.11, p< 0.01</td>
<td>1.1 ± 4.0</td>
</tr>
<tr>
<td>12/7/2007-4/24/2008</td>
<td>-1400 ± 330</td>
<td>5.7 ± 1.2</td>
<td>0.09, p< 0.01</td>
<td>0.5 ± 0.5</td>
</tr>
<tr>
<td>12/7/2008-4/24/2009</td>
<td>-3500 ± 260</td>
<td>13 ± 1.0</td>
<td>0.35, p< 0.01</td>
<td>1.5 ± 6.7</td>
</tr>
<tr>
<td>4/25/2008-12/6/2008</td>
<td>-1100 ± 280</td>
<td>4.3 ± 1.0</td>
<td>0.06, p< 0.01</td>
<td>1.2 ± 1.3</td>
</tr>
<tr>
<td>4/25/2009-12/6/2009</td>
<td>-2000 ± 490</td>
<td>7.4 ± 1.7</td>
<td>0.07, p< 0.01</td>
<td>1.2 ± 4.0</td>
</tr>
</tbody>
</table>

Partitioning coefficient significantly changed after the CFPP closure
Why? What is the explanation? Maybe add a box below that explains?
Thomas M. Holsen - tholsen, 04-06-2014
SUMMARY

- A significant reduction of three Hg concentrations after the CFPP closure
- PMF results indicate a low contribution of three Hg forms for the CFPP factor after shutdown
- CPF results also show the low contribution from the CFPP location after shutdown
- A significant change of reactive Hg gas-particle partitioning coefficient
ACKNOWLEDGEMENTS

- New York State Energy Research and Development Authority (NYSERDA)
- United States Environmental Protection Agency (US EPA) through Science to Achieve Results (STAR)
- US EPA Atmospheric Clean Air Markets Division and NADP Hg Monitoring Network
- Syracuse Center of Excellence Collaborative Activities for Research and Technology Innovation (CARTI)
- New York State Department of Environmental Conservation
REFERENCES

- Effect of the shutdown of a large coal-fired power plant on ambient mercury species
 Y Wang, J Huang, PK Hopke, OV Rattigan, DC Chalupa, MJ Utell, ...
 Chemosphere 92 (4), 360-367

- Ambient mercury sources in Rochester, NY: results from principle components analysis (PCA) of mercury monitoring network data
 J Huang, HD Choi, PK Hopke, TM Holsen
 Environmental science & technology 44 (22), 8441-8445

QUESTIONS??