

N

An FPGA-based chaos synchronisation classifier for estimation of peripheral vascular disease using photoplethysmography

R

R

C

15th Asia-Pacific Biotechnology Congress

July 25-22, 2017 Melbourne, Austra Inna: Novel Innovations and Stratogies for Sustainable Health Conference

Speaker: Jian-Xing Wu
National Synchrotron Radiation Research Center
Taiwan
July 20, 2017

Peripheral vascular disease (PVD)

- PVD is a disease in which plaque builds up in the arteries that carry blood to head, organs, and limbs.
- This thesis focuses on PVD that affects blood flow to the legs and hands.

Risk Factor	Incidence	The numbers of	Mortality
	Ratio (IR)	patients in Taiwan	Rate (%)
hemodialysis	27.8%	>70,000	11%
diabetes	11%	>1,721,000	3.1%
smoking	9%	>4,500,000	16%
hypertension	10%	>4,300,000	3.2%

Source: National Health Insurance Administration (Taiwan)

Instruments

Expensive instruments provide reliable techniques and high accuracy in clinical examinations.

Magnetic resonance angiography

Arterial Doppler

ABPI

 However, these instruments are not suitably used in a non-clinical environment.

ABPI	Severity classification	
>1.30	Non-compressible	
0.91-1.30	Normal	
0.41-0.90	Mild-to-moderate disease	
0.00-0.40	Severe disease	

Objectives of Study

- To develop a portable PPG device based on Sprott system for evaluation of PVD
- To measure the bilateral difference PPG in the foot and finger
 - > PPG > timing, amplitudes and shape
 - \triangleright CS synchronisation \rightarrow dynamic error
- To estimate the condition of microcirculation in patients with lower-limb PVD

Signal processing flow chart

Chaotic motion of bilateral PPG signals

 We choose parameters a = 2 and b = 1 result in a stable CS attractor.

Particle swarm optimization

$$\Delta \sigma_{s}^{p+1} = \omega \Delta \sigma_{s}^{p} + c_{1} \ rand_{1} (\sigma \ best_{s} - \sigma_{s}^{p}) + c_{2} \ rand_{2} (\sigma \ best_{s} - \sigma_{s}^{p})$$

Butterfly patterns within ellipse regions at E-e2 plane

Butterfly patterns for normal, LG, HG subject

System Implementation

Bubble sort algorithm

$$E_{\scriptscriptstyle total} \cong \sqrt{p_{\scriptscriptstyle
m max}^{\ \ 2} + p_{\scriptscriptstyle
m min}^{\ \ 2}}$$

Subjects measurements in the Chi-Mei medical center

Subjects had rested for 10 min in the supine position

The PPG signals were collected for 5 min

Subjects had rested for 5 min in the supine position

ABPI measurement for 10 min

Results of PVD estimation

G 1	Mean Values of Bilateral Differences		ADDI	A DDY	Professional	Proposed	
Subject No.	ΔPTT_{f} (ms)	ΔPTT _p (ms)	ΔRT (ms)	ABPI R-Leg	ABPI L-Leg Physicians Decision		Method Decision
1	2.7330	1.9970	3.1330	1.0650		P-Wave T-Wave	
2	1.1730	5.8700	4.6950	1.1404	ECG Signal		
3	2.3330	3.6660	1.3330	1.1440		~~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
4	15.321	17.286	1.9640	1.1788		PTT _p Pulse Peak PTT _f RT AMP	
5	6.3850	16.923	17.556	1.2735	PPG Pulse at Right Toe		
6	23.667	33.333	32.833	1.0714	-		
7	33.072	48.500	15.428	1.0817	0.8941	HG Diabetic	HG Diabetic [0 0 1]
8	23.606	57.700	35.000	1.0442	0.8945	HG Diabetic	HG Diabetic [0 0 1]

The statistical result

• The dynamic error distance for 21 subjects.

Conclusions

- The PVD measurement system provides high performances and stability for measure the physiological parameters.
- It has the advantages of portability and low-cost for medical diagnosis or healthy home-care system.
- The results indicate that the parameters of e₃ and e₂ are good indexes especially for PVD diagnosis.

Thank you for your attention!

Chaos synchronization system

- Synchronization of chaos is a phenomenon that may occur when two, or more, dissipative chaotic systems are coupled.
 - > it must be sensitive to initial conditions
 - > it must be topologically mixing
 - > its periodic orbits must be dense
- Communication, adaptive control system, information

Hardware Implementation

• The idea of synchronizing two identical chaotic systems was first introduced by Carroll and Pecora (1990).

	Advantage	Shortcoming
Operational amplifier (OPA)	Easy to manufactureFlexibility to setLow cost	Discreteness
Field- programmable gate array (FPGA)	Versatility	Need an A/DC systemComplex of structureHigh cost

The Sprott chaos circuit

Dynamic error

Acknowledgments

 We would like to thank clinician Dr Chian-Ming Li for providing valuable suggestions and helping with experiments.

Chi Mei Medical Center

Acknowledgments

Software & system development: (Matlab, FPGA(Verilog), LabVIEW2015), DXP

The Institutional Review Board (IRB) of the Kaohsiung Veterans General Hospital, Tainan Branch, under contract number: **VGHKS13-CT12-11**.

Previous researches(3)

Future works

3D Ultrasonic Imaging System

This study proposes the 3D ultrasound imaging and acoustic Doppler analysis for PVD in arteriovenous fistula based on FPGA.

3D Reconstruction(1)

3D Reconstruction

3D Reconstruction(2)

(A) The imaging system block diagram. (B) The method of the circling blood vessel contour and it result. (C) The 3D blood flow image: (1) PAOD patients (2) Normal person.