

KINGDOM OF SAUDI ARABIA

MINISTRY OF HIGHER EDUCATION

AL-BAHA UNIVERSITY

A UNI

COLLEGE OF ENGINEERING

Dr. Jahid Zeghiche Univesity of Al-Baha K.S.A

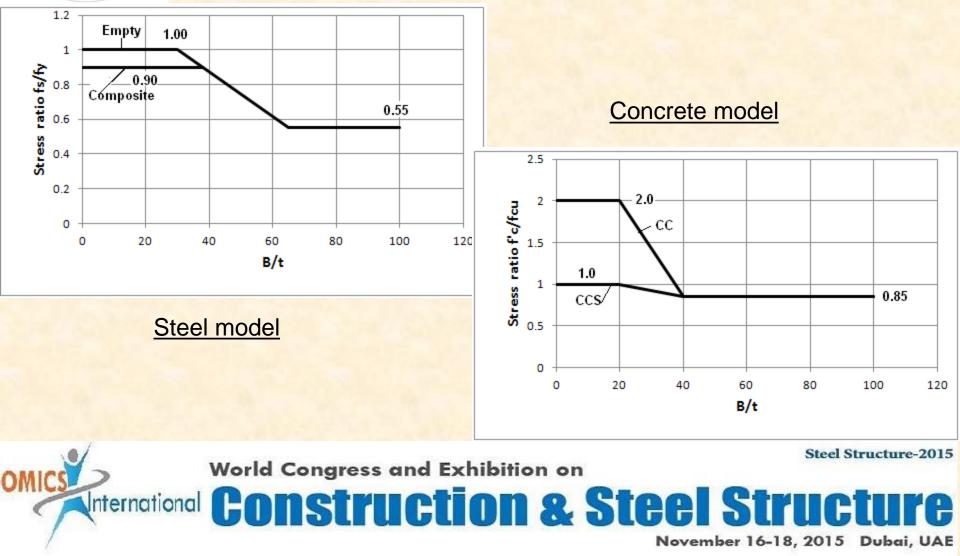
Steel Structure-2015

Content:

- **1. Introduction**
- 2. Theoretical analysis
- 3. Experimental program
- 4. Validation of the suggested method
- **5. Discussion**
- 6. Conclusion

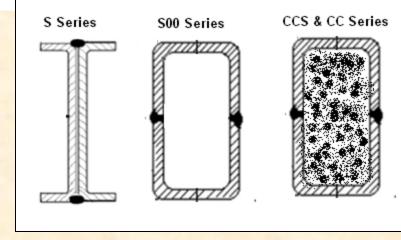
World Congress and Exhibition on International Construction & Steel Structure-2015 International Construction & Steel Structure November 16-18, 2015 Dubai, UAE

1. Introduction:


The use of thin steel hollow sections filled with concrete is an attractive method used in construction. However, many difficulties are encountered during the design phase as most codes of practice limit their use to a certain cross section slenderness B/t ratio. The latter is a major parameter that dictates the behaviour of the section and hence the structural element and consequently the whole structure.

For the design purpose, there is a need to develop a method that could help predicting the strength of the studied composite section. More information could be given for the designer as far as local buckling is concerned. In advance we can predict the effect of the local buckling and consider its effect on the strength of the composite section and the column. This method could be used as guidance by considering the performance of the chosen section and decide whether the chosen section is appropriate or not. This will be the aim of the present study.

2. Theoretical analysis



2. Theoretical analysis

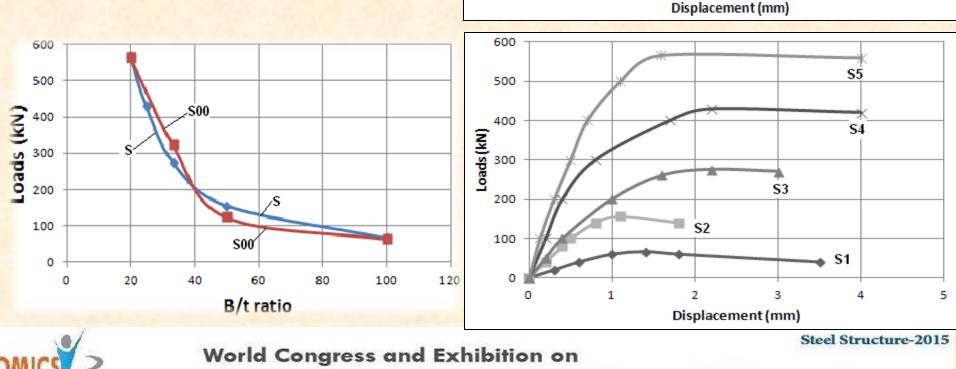
Nsq = fy. As + 0.67. fcu. Ac ----> Referential squash load $N = fs.As + f'c.Ac \longrightarrow$ Theoretical load Ns = fs. AsSteel load Nc = f'c.Ac-----> Concrete load Ig = N/NsqGlobal strength index $Is = Ns/Nsq \longrightarrow$ Steel strength index $Ic = Nc/Nsq \longrightarrow$ Concrete strength index

World Congress and Exhibition on International Construction & Steel Structure-2015 November 16-18, 2015 Dubai, UAE

Main studied parameters:

- •The steel cross section shape
- The B/t ratio range: 20-100
- The loading mode:

CCS mode : steel &concrete loaded **CC mode**: Only concrete loaded


Steel:fy=Concerete:fcu=Steel cross section:100x

fy= 300. MPa fcu= 30. MPa 100x100 mm

World Congress and Exhibition on International Construction & Steel Structure-2015

Test Results for empty steel stubs

600

500

400

200

100

0

0

1006 (kN)

International Construction & Steel Struct

November 16-18, 2015 Dubai, UAE

\$500

2

2.5

re

\$300

1.5

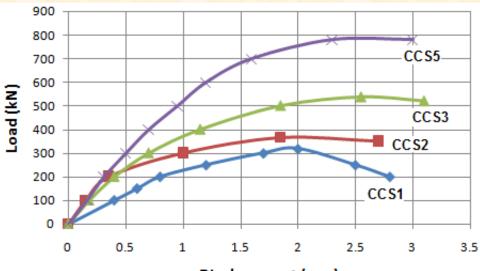
S100,

/S200

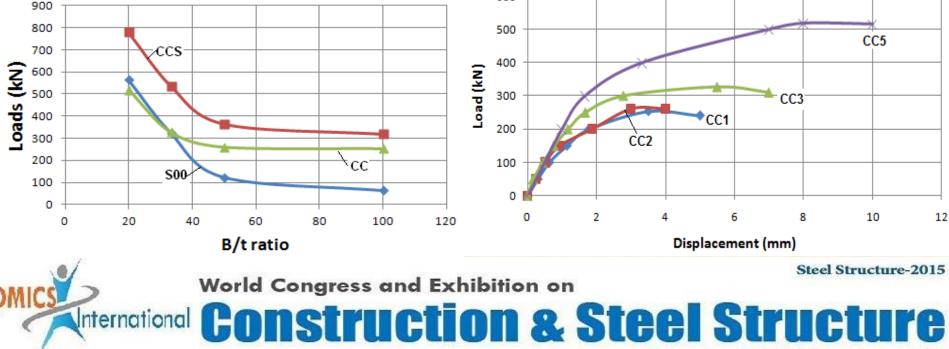
1

0.5

Theoretical and experimental results for empty steel stubs.


Sp.	В	Т	B/T	As	Test	f _s	N	N _{sq}	I _s	N/Test
	(mm)	(mm)		(mm ²)	(kN)	(MPa)	(kN)	(kN)	(kN)	1000
11.7 3					1.3 5					3 7 11
S100	100	1	100	396	63.8	165	65.3	118.8	0.537	1.023
S200	100	2	50	784	124	225	176	235.2	0.527	1.419*
S300	100	3	33.3	1164	323	269	314	349.2	0.972	0.972
S500	100	5	20	1900	564	300	570	570	0.989	1.010
S1	100	1	100	396	66.3	165	65.3	118.8	0.558	0.985
S2	100	2	50	784	156	225	176	235.2	0.663	1.128
S 3	100	3	33.3	1164	275	269	314	349.2	0.787	1.141
S4	100	4	25	1536	428.7	270	414.7	460.8	0.93	0.967
S5	100	5	20	1900	566	300	570	570	0.992	1.007
				1					Mean:	1.07 2

*When excluding odd result S₂₀₀ Mean=1.029


World Congress and Exhibition on International Construction & Steel Structure-2015 November 16-18, 2015 Dubai, UAE

Test Results for composite stubs

Displacement (mm)

600

Theoretical & experimental results for composite stubs

Sp.	B (mm)	T (mm)	B/T	A _s (mm ²)	A _c (mm ²)	Test (kN)	N _{sq} (kN)	f _s (MPa)	f _c ' (MPa)	N (kN)	Ig	N/Test
CCS1	100	1	100	396	9604	316.6	311.8	165	25.5	310.2	1.015	0.979
CCS2	100	2	50	784	9216	365.	420.4	219	25.5	406.6	0.868	1.113
CCS3	100	3	33.3	1164	8836	536.7	532.8	270	27.6	558.1	1.0 <mark>3</mark> 9	1.039
CCS5	100	5	20	1900	8100	780.	732.8	270	30.	756.	1.064	0.969
CC1	100	1	100	396	9604	250.	311.8	98.8	25.5	244.9	0.801	0.979
CC2	100	2	50	784	9216	260.	420.4	48.8	25.5	235.	0.618	0.903
CC3	100	3	33.3	1164	8836	326.7	532.8	32.3	36.	318.	0.613	0.973
CC5	100	5	20	1900	8100	518.3	732.8	18.9	60.	486.	0.707	0.937
											Mean:	0.986

World Congress and Exhibition on International Construction & Steel Structure-2015 November 16-18, 2015 Dubai, UAE

4 Validation of suggested method

Comparison of experimental and theoretical results

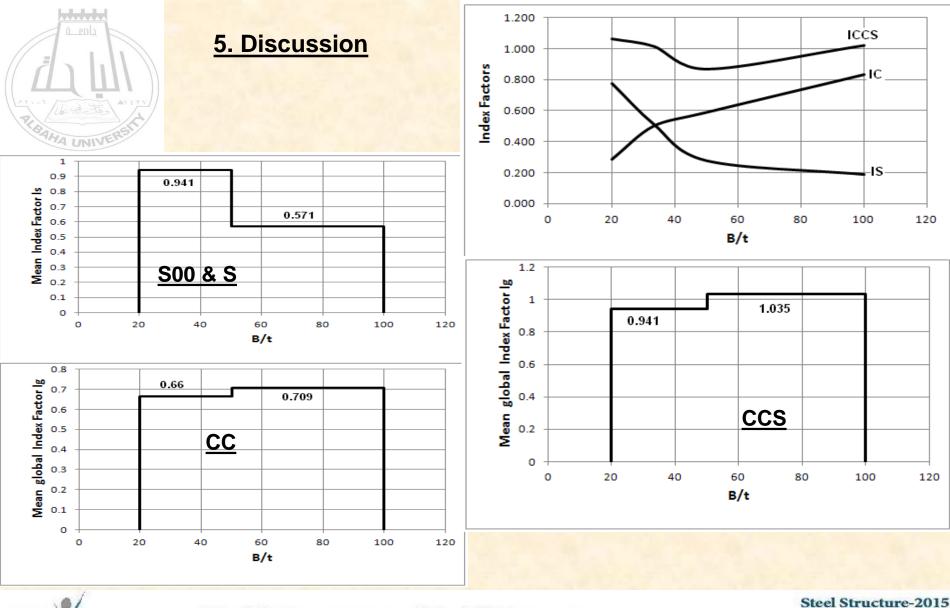
Sp.	B		T	B/T	As	Test	f,	N		N _{sq}		I,	N/Test
•	(mm)	(m m)		(mm²)	(kN)	(MPa)	(kN		(kN)		kN)	
S100	100		1	100	396	63.8	165	65.	3 1	118.8	0.	.537	1.023
S200	100		2	50	784	124	225	170	5 2	235.2	0.	.527	1.419*
S300	100		3	33.3	1164	323	269	314	4 3	349.2	0.	.972	0.972
S500	100		5	20	190 0	564	300	570	0	570	0.	.989	1.010
S 1	100		1	100	396	66.3	165	65.	3 1	118.8	0.	.558	0.985
S2	100		2	50	784	156	225	170	5 2	235.2	0.	.663	1.128
S3	100		3	33.3	1164	275	269	314	4 3	349.2	0.	.787	1.141
S4	100		4	25	1536	428.7	270	414	.7 4	460.8	0	.93	0.967
S5	100		5	20	190 0	566	300	570	0	570	0.	.992	1.007
											M	ean:	1.072
Sp.	В	Т	B/T	A ₅	Ac	Test	N _{sq}	fs	f _c '	N		Ig	N/Te
	(mm)	(mm)		(mm ²)	(mm ²	(kN)	(kN)	(MPa)	(MP:	a) (kľ	Ð	-	st
)								
CCS	100		100		0.004	316.6		1.00				1 015	0.070
1	100	1	100	396	9604	510.0	311.8	165	25.5	5 31	I	1.015	0.979
CCS	100	2	50	784	9216	365.	420.4	219	25.5		I	0.868	1.113
2										6	I		
CCS	100	3	33.3	1164	8836	536.7	532.8	270	27.6		I	1.039	1.039
3	100			1.000						1	I		
CCS 5	100	5	20	1900	8100	780.	732.8	270	30.	75	6.	1.064	0.969
cci	100	1	100	396	9604	250.	311.8	98.8	25.5	5 24	4.	0.801	0.979
										9			
CC2	100	2	50	784	9216	260.	420.4	48.8	25.5	5 23	5.	0.618	0.903
CC3	100	3	33.3	1164	8836	326.7	532.8	32.3	36.		I	0.613	0.973
CC5	100	5	20	1900	8100	518.3	732.8	18.9	60.	48	6.	0.707	0.937
												Mean	0.986

Steel Structure-2015

World Congress and Exhibition on

International Construction & Steel Structure

4 Validation of suggested method

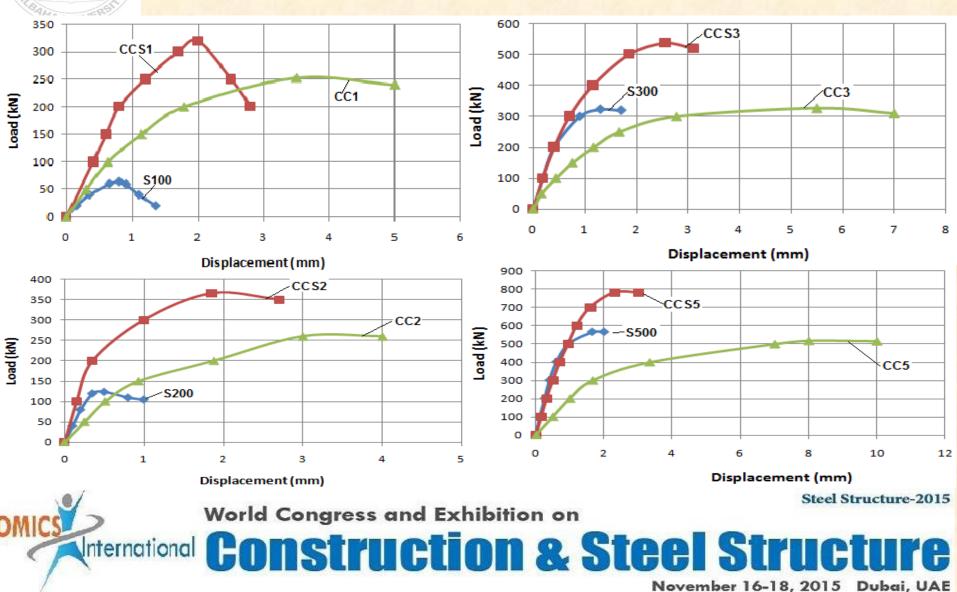

Comparison of experimental and theoretical results from literature

Sp.& Ref.	H (mm)	B (mm)	T (mm)	A _s (mm ²)	A _c (mm ²)	f _y (MPa)	f _{cu} (MPa)	Test (kN)	N (kN)	Ig	N/Test
Lin Hai Han & Guo Hang Yao(2004)	200 200	200 200	3 3	2364 2364	37636 37636	303.5 303.5	58.5 58.5	2306 2284	2266 2266	1.051 1.046 Mean:	0.982 0.992 0.987
M. Mouli (2007)	120 150 120 150	80 100 80 100	5 5 5 5	1845 2260 1845 2260	7280 12080 7265 12070	350 346 350 346	44.8 44.8 36.7 36.7	985 1340 947 1306	897.5 1201.6 840 1115.7	1.139 1.170 1.096 1.210 Mean:	0.911 0.896 0.887 0.854 0.887
N. Ferhoune & J. Zeghiche (2012)	102 102 102	68 68 70	2 2 2.1	664 664 704.7	- 6272 6465.2	300 300 300	20 20	159 290 280	144.4 299.3 263.1	0.798 1.024 0.939 Mean:	0.908 1.032 0.939 0.959
J. Zeghiche (2013)	98 102 99.9 98 102 100	74 68 69 74 68 69	2 2 1.95 2 2 2	672 664 643.5 672 664 660	- 6580 6272 6240	300 300 300 300 300 300	- 20 20 20	180 159 168 310 290 298	145.1 143.4 135.1 263. 250. 249.6	0892 0.798 0.870 1.070 1.024 1.058 Mean:	0.806 0.901 0.804 0.848 0.862 0.837 0.843

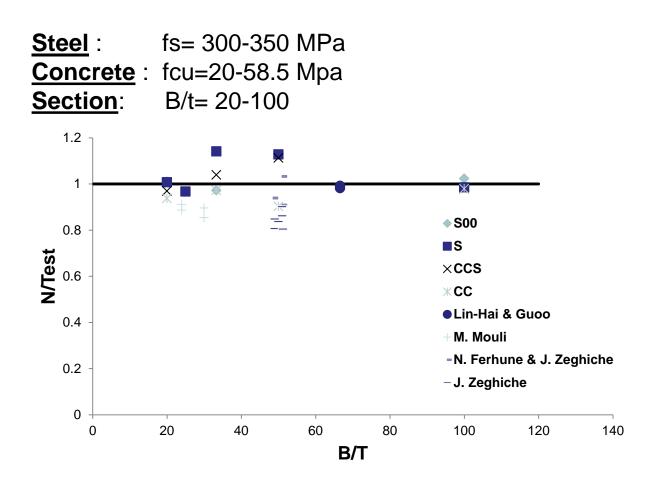
Steel Structure-2015

World Congress and Exhibition on

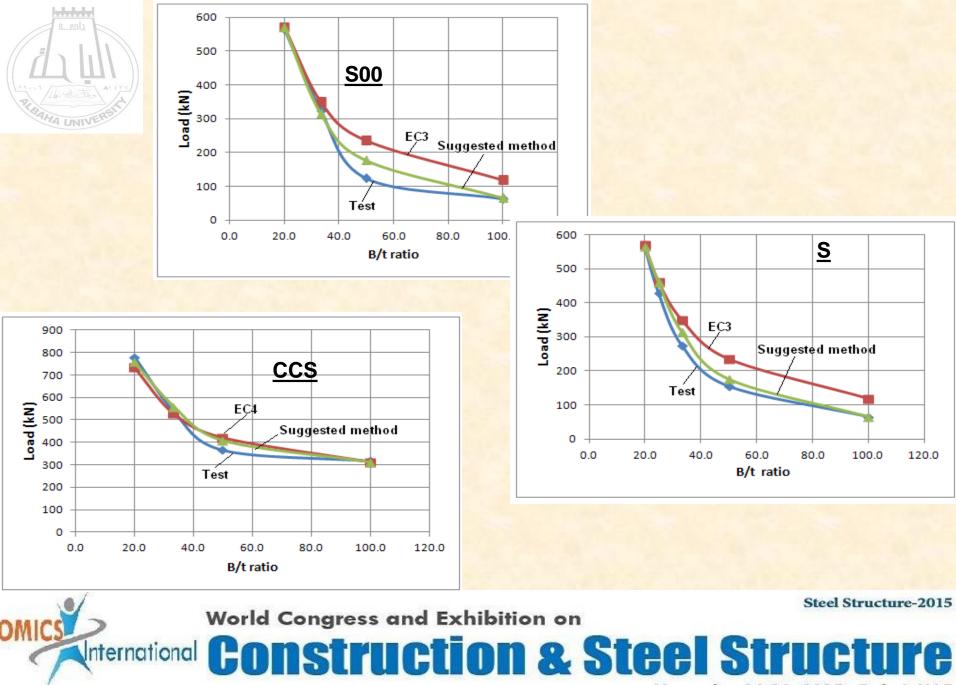
International Construction & Steel Structure



World Congress and Exhibition on


International Construction & Steel Struct P

5. Discussion


Empty steel stubs, S00 & S series

Composite stubs from CCS & CC series

Conclusion:

Within the limits of the present research the following conclusion could be made:

1- A theoretical method was suggested to evaluate the strength of thin steel and concrete-filled steel stubs under compressive loading. By assuming for both steel and concrete a model that takes into account the section slenderness, the steel local buckling and the concrete confinement a reasonable prediction was obtained for empty steel and composite stubs.

2- Experiments were conducted on a large range of steel section slenderness B/t (20-100). The presence of concrete core for hollow steel stubs increased the section strength and delayed the steel local buckling that was noticed to occur in most empty steel stubs.

3- By loading both steel and concrete, higher strength was reached for the studied sections. By loading only the concrete the response was more ductile but less strength was reached compared to the composite loading mode.

4- The global strength index Ig was monitored for both loading modes. It was found that **steel and concrete had active complementary role** in the case of CCS loading mode as indicated by steel and concrete indexes Is, Ic respectively.

5- By comparing experimental, theoretical and EC3 prediction it was found that the **EC3 ceases to** predict at a B/t ratio of 33 for empty steel hollow stubs and 25 for empty I shaped steel stubs. For composite stubs, **EC4 prediction was in good agreement with theoretical and test up to a B/t ratio of 100.** Future work will be focusing on the strength of concrete-filled steel stubs using high strength steel and concrete to validate the suggested theoretical method described in this paper.

Thank you for your attention

Dr. Jahid Zeghiche

University of Al-Baha

K.S.A

