Properties of Photonic and Plasmonic Resonance Devices

Jae Woong Yoon, Kyu Jin Lee, Manoj Niraula, Mohammad Shyiq Amin, and Robert Magnusson

Dept. of Electrical Engineering, University of Texas – Arlington, TX 76019, United States
Outline

• Introduction
• Guided-mode resonance bandpass filters.
• Broadband omnidirectional Si grating absorbers.
• Transmission resonances in metallic nanoslit arrays.
• Gain-assisted ultrahigh-Q SPR in metallic nanocavity arrays.
• Conclusion
Photonic Resonances in Periodic Thin Films

Thin-film interference

Guided mode by TIR

Guided-mode resonance

- Highly controllable with the pattern’s geometry.
- Spectral engineering by blending of multiple guided modes.
Guided-Mode Resonances in Dielectric and Semiconductor Thin-Film Gratings

Low index-contrast gratings

- High-Q, narrow band resonances.
- Primarily reflection peaks.
- Optical notch filters, biosensors, and so on.

High index-contrast gratings

- Both broadband + narrow-band effects.
- Versatile spectral engineering.
- Lossless mirrors/polarizers, flat microlenses, bandpass filters, broadband resonant absorbers, and so on.

[Ding and Magnusson, Opt. Express 12, 5661 (2004)]
Bandpass Filters: Theoretical

Conventional multilayer

Single-layer GMR structure

Major advantages
- Simple fab. processes (involves less fabrication errors).
- Stop-bands and pass-line are determined by geometry of the surface texture.
Bandpass Filters: Experimental

Performance Parameters

- Pass-line (peak): 0.4 nm FWHM, 83% efficiency.
- Stop-band: < 1% over 100 nm bandwidth.
- Angular tunability = 6 nm/deg.
Broadband Omnidirectional Absorbers: Theoretical

Planar absorber

\[\alpha - Si:H \]

\[SiO_2 \]

GMR absorber

15.5% fill factor

\[\Lambda = 419 \text{ nm} \]

\[340 \text{ nm} \]

\[2000 \text{ nm} \]

\[30 \text{ nm} \]
Broadband Omnidirectional Absorbers: Theoretical

Resonant Light Trapping

(a) TM, \(\phi = 0^\circ \)

(b) TE, \(\phi = 0^\circ \)

Anti-Reflection Effect

unpatterned surface \(R_0 \)

patterned surface \(R_1 \)

(a) TM \(120^\circ \)

(b) TM \(120^\circ \)

(c) TE \(120^\circ \)

(d) TE \(120^\circ \)
Broadband Omnidirectional Absorbers: Experiment
Surface Plasmon Resonances in Metallic Nanostructures

• Collective oscillation of surface free electrons.

• Deep subwavelength confinement:
 - Metallic metamaterials.
 - Optical communication with nanoscopic objects.
 - Quantum optical effects.

• Highly lossy due to ohmic damping.

• Primarily absorption and transmission resonances. (↔ Photonic resonances)
Extraordinary Optical Transmission

Extraordinary Optical Transmission

“Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits”

Destructively interfere

Fabry-Perot resonance of slit guided mode

\[k_0 \text{Re}(n_{\text{eff}})h - \text{arg}(r_{12}) = m\pi \]

SPP resonance condition

\[\lambda_{SP} = \frac{\Lambda}{m} \left[\text{Re}\left\{\frac{\varepsilon_2}{1 + \varepsilon_2}\right\}^{1/2} \right] \pm \sin(\theta) \]
Surface and Cavity Plasmonic Resonances in Metallic Nanoslit Arrays

Analytic Theory RCWA

T_a, Lossless ($\epsilon_M'' = 0$)

T_b, Lossy ($\epsilon_M'' = 0.01$)

$\lambda (\Lambda)$

$T (\text{RCWA})$

$T (\text{Analytic Theory})$

$q = 1, 2, 3, 4, 5$

$d (\Lambda)$

$\rho_D + \rho_{sp} = \rho_{in}$

η_{in}

η_{ex}

$\tau = \tau_{sp} + \tau_D$

CM

SPP

Metal

Slit

Metal

$\text{To External Plane Wave}$
Toward Ultrahigh-Q Metallic Nanocavity Resonances

- $|\rho_\text{in}|^2$
- $|\tau|^2$

- $k = 0$
- $k = -2.26 \times 10^{-3}$

- λ_{AR}

- $|E_z/E_0|^2$

- T

- T

- $q = 5$
- $q = 4$
- $q = 2$
- $q = 3$ (missing)

- with optical gain in the dielectric host
Conclusion

• Demonstrated optical bandpass filters and broadband absorbers based on high-index contrast subwavelength waveguide gratings.
• Explained complex resonance effects in metallic nanoslit arrays with a simple model of an optical cavity with Fano-resonant reflection boundaries.
• The theory predicts efficient room-T ultrahigh-Q plasmonic nanocavity resonances with the externally amplified intracavity feedback mechanism.
ACKNOWLEDGEMENT

This research was supported, in part, by the UT System Texas Nanoelectronics Research Superiority Award funded by the State of Texas Emerging Technology Fund as well as by the Texas Instruments distinguished University Chair in Nanoelectronics endowment. Additional support was provided by the National Science Foundation (NSF) under Award No. ECCS-0925774 and IIP-1444922.

Publications with these works: