Properties of
Photonic and Plasmonic
Resonance Devices

Jae Woong Yoon, Kyu Jin Lee, Manoj Niraula, Mohammad Shyiq Amin,

and Robert Magnusson

Dept. of Electrical Engineering, University of Texas — Arlington, TX 76019, United States

M TEXAS COLLEGE or ENGINEERING
"ARLINGTON



Outline

* |ntroduction

 Guided-mode resonance bandpass filters.

 Broadband omnidirectional Si grating absorbers.

* Transmission resonances in metallic nanoslit arrays.

* @Gain-assisted ultrahigh-Q SPR in metallic nanocavity arrays.
* Conclusion
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Photonic Resonances in Periodic Thin
Films

Thin-film interference Guided-mode resonance
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- Highly controllable with the pattern’s geometry.
- Spectral engineering by blending of multiple
guided modes.
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Guided-Mode Resonances in Dielectric and
Semiconductor Thin-Film Gratings

Low index-contrast gratings
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- High-Q, narrow band resonances.

- Primarily reflection peaks.

- Optical notch filters, biosensors, and so
on.
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High index-contrast gratings
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- Both broadband + narrow-band effects.
- Versatile spectral engineering.

- Lossless mirrors/polarizers, flat
microlenses, bandpass filters, broadband
resonant absorbers, and so on.



Bandpass Filters: Theoretical

10—

- = = = Multilayer |
GMR

0.8+

0.6

0.4 4

Transmittance

0.2 4

Sio,

0'0 L L L L AL AL A L AL AL AL R R L
1250 1275 1300 1325 1350

Wavelength (nm)

Conventional Single-layer GMR
multilayer structure

Major advantages
- Simple fab. processes (involves less fabrication errors).
- Stop-bands and pass-line are determined by geometry of the surface texture.
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Bandpass Filters: Experimental
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Design Fabricated Performance Parameters
- Pass-line (peak): 0.4 nm FWHM, 83% efficiency.
- Stop-band: < 1% over 100 nm bandwidth.

- Angular tunability = 6 nm/deg.

EERING




340 nm

2000 nm

30nm9%

/)
r

Broadband Omnidirectional Absorbers:
Theoretical

Sio,

Planar absorber

GMR absorber

15.5% fill factor

A =419 nm
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Broadband Omnidirectional Absorbers:

Theoretical
Resonant Light Trapping Anti-Reflection Effect
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Broadband Omnidirectional Absorbers:

Experiment
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Surface Plasmon Resonances
in Metallic Nanostructures

 Collective oscillation of surface free electrons.
* Deep subwavelength confinement:

- Metallic metamaterials.
- Optical communication with nanoscopic objects.
- Quantum optical effects.

* Highly lossy due to ohmic damping.

* Primarily absorption and transmission
resonances. (€<= Photonic resonances)
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Extraordinary Optical Transmission
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Extraordinary Optical Transmission

Cao et al., Phys. Rev. Lett. 88 057403 (2002)
“Negative role of surface plasmons in the transmission of metallic

gratings with very narrow slits”

Fabry-Perot resonance of slit guided mode
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Surface and Cavity Plasmonic Resonances
in Metallic Nanoslit Arrays
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Toward Ultrahigh-Q Metallic Nanocavity
Resonances
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Conclusion

 Demonstrated optical bandpass filters and broadband
absorbers based on high-index contrast subwavelength
waveguide gratings.

* Explained complex resonance effects in metallic nanoslit
arrays with a simple model of an optical cavity with Fano-
resonant reflection boundaries.

* The theory predicts efficient room-T ultrahigh-Q plasmonic
nanocavity resonances with the externally amplified
intracavity feedback mechanism.
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