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Outline

• Introduction

• Guided-mode resonance bandpass filters.

• Broadband omnidirectional Si grating absorbers.

• Transmission resonances in metallic nanoslit arrays.

• Gain-assisted ultrahigh-Q SPR in metallic nanocavity arrays.

• Conclusion
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Photonic Resonances in Periodic Thin 

Films
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Thin-film interference

Guided mode by TIR

Guided-mode resonance

- Highly controllable with the pattern’s geometry.

- Spectral engineering by blending of multiple 

guided modes.



Guided-Mode Resonances in Dielectric and 

Semiconductor Thin-Film Gratings

Low index-contrast gratings High index-contrast gratings

- High-Q, narrow band resonances.

- Primarily reflection peaks.

- Optical notch filters, biosensors, and so 

on.

- Both broadband + narrow-band effects.

- Versatile spectral engineering.

- Lossless mirrors/polarizers, flat 

microlenses, bandpass filters, broadband 

resonant absorbers, and so on.

[Wang and Magnusson, Appl. Opt. 32, 2606 (1993)] [Ding and Magnusson, Opt. Express 12, 5661 (2004)]
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Bandpass Filters: Theoretical
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Major advantages

- Simple fab. processes (involves less fabrication errors).

- Stop-bands and pass-line are determined by geometry of the surface texture.
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Surface profiles (AFM)

Design Fabricated
Performance Parameters

- Pass-line (peak): 0.4 nm FWHM, 83% efficiency.

- Stop-band: < 1% over 100 nm bandwidth.

- Angular tunability = 6 nm/deg.
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Broadband Omnidirectional Absorbers: 

Theoretical
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Broadband Omnidirectional Absorbers: 

Theoretical

Anti-Reflection EffectResonant Light Trapping
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Broadband Omnidirectional Absorbers: 

Experiment
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Surface Plasmon Resonances 

in Metallic Nanostructures
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• Collective oscillation of surface free electrons.

• Deep subwavelength confinement:

- Metallic metamaterials.

- Optical communication with nanoscopic objects.

- Quantum optical effects.

• Highly lossy due to ohmic damping.

• Primarily absorption and transmission 

resonances. (↔ Photonic resonances)



Extraordinary Optical Transmission

Nature 391 667; Phys. Rev. B 58 6779.
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Extraordinary Optical Transmission

Destructively

interfere

CM

Fabry-Perot resonance of slit guided mode

SPP resonance condition

Cao et al., Phys. Rev. Lett. 88 057403 (2002)

“Negative role of surface plasmons in the transmission of metallic 

gratings with very narrow slits”
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Toward Ultrahigh-Q Metallic Nanocavity 

Resonances
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Conclusion

• Demonstrated optical bandpass filters and broadband 

absorbers based on high-index contrast subwavelength 

waveguide gratings.

• Explained complex resonance effects in metallic nanoslit 

arrays with a simple model of an optical cavity with Fano-

resonant reflection boundaries.

• The theory predicts efficient room-T ultrahigh-Q plasmonic 

nanocavity resonances with the externally amplified 

intracavity feedback mechanism.
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