

Indian Institute of Food Processing Technology Ishita Auddy, Research Scholar

DR.V.SUBRAHMANYAN BLOC

Ministry of Food Processing Industries Government of India Thanjavur, Tamil Nadu

11/10/2020

Development of amperometric multienzyme biosensor to evaluate the adulteration in Virgin coconut oil(VCO)

11/10/2020

Coconut oil

IIFP

Government of Indi

- Coconut oil (CO) or copra oil is an edible oil extracted from the kernel or meat of the mature coconut (*Cocos nucifera*).
- It is extensively used for food and industrial purposes.

Global export scenario of coconut oil

Controller General of Commercial Intelligence and Statistics

Virgin Coconut Oil (VCO)

- VCO is quoted as "healthiest oil in the world" due to its medium chain fatty acids 48-53% of lauric acid. (Espino, 2006).
- VCO is growing in popularity as nutritional supplements and functional food (Villarino *et al.*, 2007).
- VCO is extracted from fresh coconut milk obtained from matured coconut of 12 months old by mechanical or natural means.

Ministry of Food Processing Industries Government of India

(Dayrit et al., 2011)

Why VCO is Adulterated?

- VCO has its own beneficial nature but its price is 10-20 times higher than coconut, corn, palm and sunflower oils (Rohman *et al.*, 2011).
- Some common adulterants of virgin coconut oil are palm kernel oil, palm oil, sunflower oil, corn oil, coconut oil, etc.
- In market coconut oil and virgin coconut oil is hard to differentiate.

Parameter	Virgin Coconut Oil	Coconut oil
Lauric acid(%)	48-53%	42-45%
Phenolic compounds	7.78 -29 mg	6.14 -28 mg
Diglycerides	1.55 ppm	4.10ppm

Existing methods of detection of diglyceride

 Existing techniques used are High Performance Liquid Chromatography (HPLC), Nuclear Magnetic Resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR).

Disadvantages:

- Costly as well as laborious methods
- No simple/portable instrument

ÍIFP

Fabrication and Assembly of Biosensor for VCO

Mechanism

Ministry of Food Processing Industries

Government of India

IIFP

Electrode system and Setup

- Working electrode = Glassy carbon electrode
- Reference electrode= Ag/AgCl electrode
- Counter electrode= Pt wire electrode

Methodology

Preparation of 0.1M Sodium Phosphate Buffer

Preparation of gelatin membrane solution

Preparation of enzyme mixture(-20°C)

Dipping of working electrode in enzyme mixture containing membrane

Dipping of working electrode in gluteraldehyde

Readings taken

a. Physical adsorption

Standardization of the immobilization technique

b. Layer by Layer Deposition

Standardization of the immobilization technique

c. Covalent Bonding

IIFPT

Standardization of the immobilization technique

d. Sol gel entrapment

Standardization of the immobilization technique

e. Cross Linkage

> In cross linkage, Coefficient of Determination ($R^2 = 0.827$) found to be greater than other techniques.

 \succ Coefficient of Determination R² should be between 0.8 to 1.0.

Ministry of Food Processing Industries

Government of India

IIFP

Characterization of electrode: Cyclic Voltammetry Study

➤ The anodic potential shifted towards positive side with the increase of current and the cathodic peak potential shifted in the reverse direction in the presence of enzymes bound to that of the gelatin membrane.

a. Effect of potential

b. Effect of pH

Optimized potential : +0.5V
Optimized pH: 7.0

ÍIFPT

Government of India

c. Effect of different % of gluteraldehyde

> In 2.5% concentration of gluteraldehyde Coefficient of Determination($R^2 = 0.99$) was found to be greater.

ÍIFPT

Government of India

d. Effect of different mg of gelatin

> In 45 mg concentration of gelatin Coefficient of Determination($R^2 = 0.99$) was found to be greater.

IIFP

Government of India

e. Effect of different concentration of BSA

> In 30 mg concentration of Bovin Serum Albumin (BSA) Coefficient of Determination($R^2 = 0.955$) was found to be greater.

f. Effect of incubation time

SI.No	Parameters	Optimized conditions	
1.	рН	7	
2.	Gluteraldehyde %	2.5%	
3.	Applied potential	0.5 V	
4.	Gelatin concentration	40mg	
6.	BSA concentration	30 mg	
7.	Immobilization time	1 hr	
8.	Immobilization method	Cross Linkage method	

> The optimized conditions used for development of biosensor for virgin coconut oil

Empirical relation for the developed biosensor

Response was recorded in terms of current obtained from the different concentration of diglyceride solution.

>The increase in concentration of diglyceride (ppm) there was increase in the current (μA) in a linear trend.

Validation of Biosensor

Validation done by existing High Performance Liquid Chromatography(HPLC)
 Fresh VCO and CO was in the range between 2.25- 3 ppm and 4 -5 ppm respectively.
 The amount of diglyceride found in different proportions of adulterated samples of VCO:CO in ratio of 90:10,70:30,50:50 was increased in range from 5.3 ppm to 7.5 ppm

IIFPT

Performance of the Developed Biosensor

Precision

Days	Precision of the Biosensor		
1 st day	Mean (ppm)	S.D	CV%
	2.2	0.34	0.15±0.56
7 th day	2.5	0.25	0.1±0.32

CV calculated =	Standard deviation(S.D)	
	mean(x)	

✓ CV less than 1 (CV<1) means low variance i.e. precision is better.

Performance of the Developed Biosensor

Stability of biosensor

% of enzyme activity={(100/first day current reading) *(5th day current reading)}
 50% activity was decreased within 15 days

Detection level in adulterated Virgin coconut oil (VCO)

ÍIFPT

Government of Indi

The developed biosensor able to detect above 20 % adulteration of coconut oil in VCO

Conclusion

IIFP

- Linear empirical relation developed was found to have coefficient of determination (R²) =0.99.
- The validation study showed no significant difference at 95 % confidence level.
- The biosensor could detect above 20 % adulterated sample with detection time of 15 seconds per samples.
- The developed biosensor can be used to evaluate the adulteration in VCO and was observed to be reused for about 15 days.

Future Aspects

Acknowledgement

I would like to acknowledge INDLAN INSTITUTE OF FOOD PROCESSING TECHNOLOGY (IIFPT), Thanjavur, India and our team.

Guidance: Dr.S.Shanmugasundaram Associate Professor and Head Food Engineering

Shubham Nimkar

N. Hariharan Project Funded by "Coconut Development Board", Govt. of India **IIFP**

Government of Indi

FPI

THANK YOU

"Sensors are the integrated & smart approach to evolution"