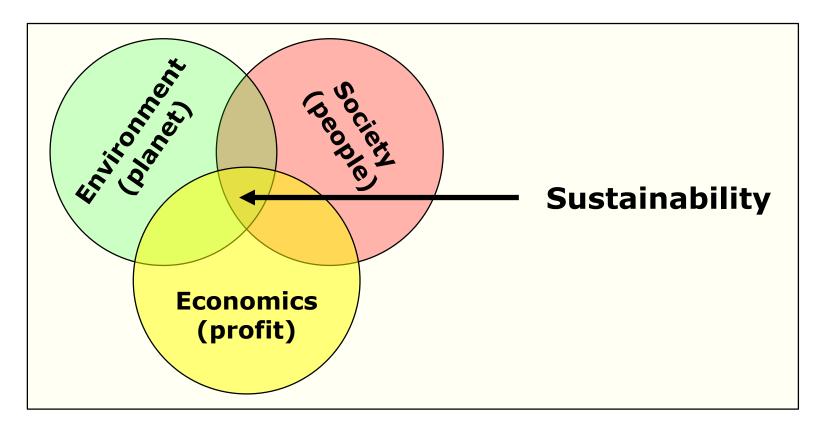


Blood products as sustainable ingredients in livestock nutrition: protein source and alternative to antibiotics


dr. Isabelle Kalmar, DVM, MSc LAS, PhD Veterinary R&D, Veos group, BE

KEYNOTE LECTURE

Actipro The Concept of Sustainable Livestock Production

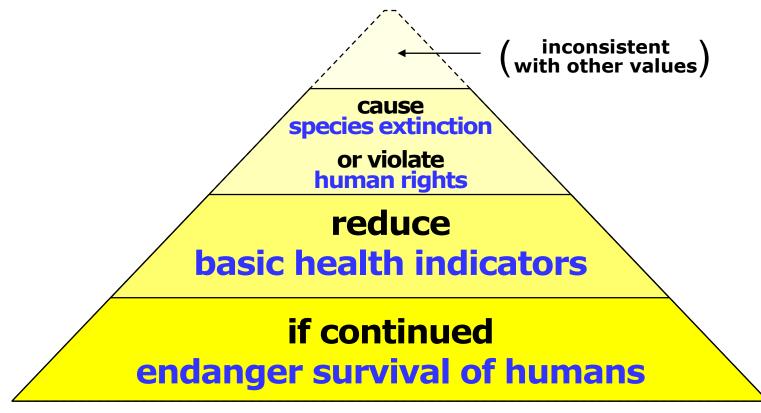
- widespread concept
- covering a broad array of issues that vary in: urgency, severity, uncertainty of consequences, temporal and spatial dimensions

The Concept of Sustainable Livestock Production

• Sustainability is defined by a multitude of elusive descriptions <u>literally</u>: "the capability of maintaining something in existence"

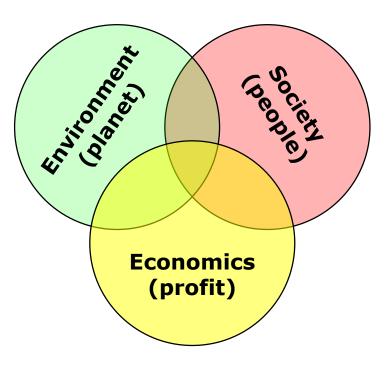
"sustainability"

Is meeting the needs of the present generation without compromising the ability of future generations to meet their own needs (1987, WCED)


> 100 definitions by the mid-1990's (definitional chaos)

something that improves the quality of human life within the carrying capacity of the supporting eco-systems (Milne et al., 2006)

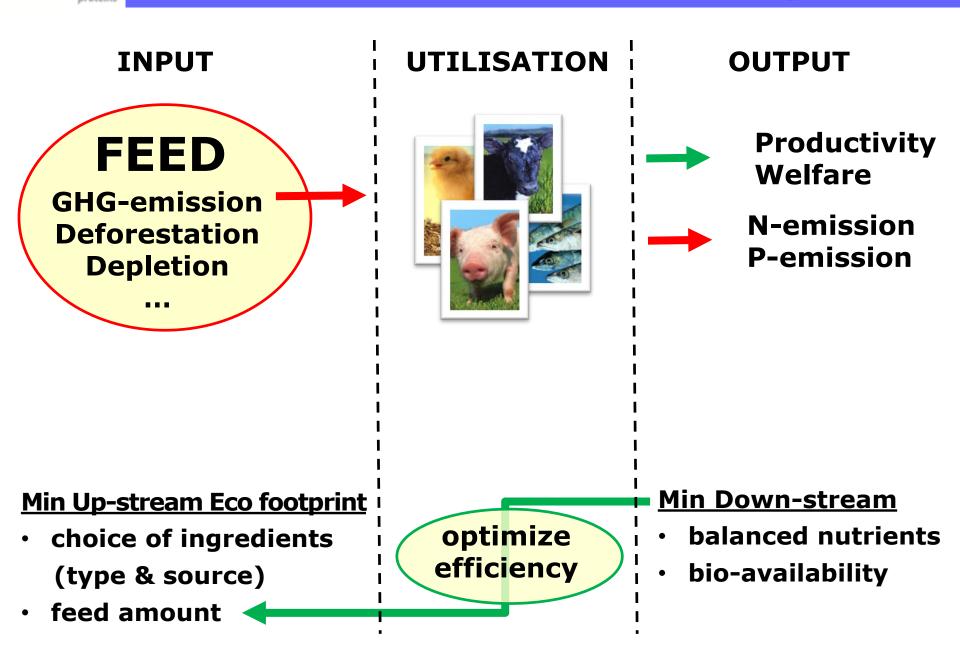
"unsustainable" implies a direct or indirect potential to impede the ecosystem functions that support human life, human health and species viability (after Marshall and Toffel, 2005)


Actiping Hierarchy of unsustainable actions

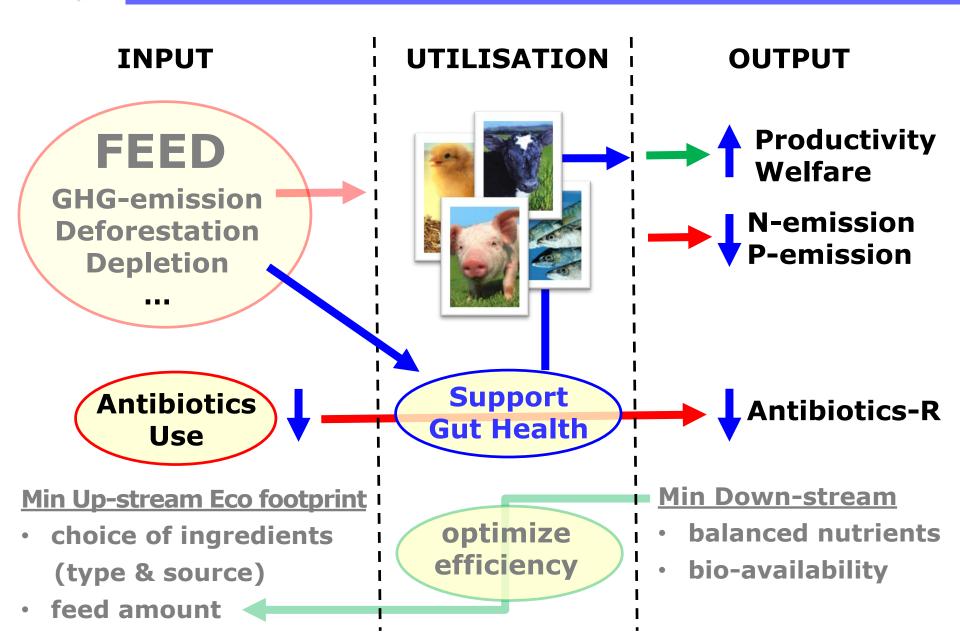
The 4 or 3 levels of issues that are considered in the understainding of the term sustainability

(after Marshall and Toffel, 2005)

Strives to a balance in


- economic goals
- social goals
- ecologic goals
- ➡ on the long run

Inextricable Link


- animal health
- animal welfare
- public health
- environmental health

Feed-related variables of sustainable livestock production

Feed-related variables of sustainable livestock production

Actipro

- **1. Sourcing & Production of ingredients**
- 2. Used as feed ingredients
 - ⇒ Nutrient Utilisation (productivity)
 - Gut Health (animal health/welfare, antibiotics use, productivity)
- 3. Sustainability of down-stream effects
 - ⇒ N-emission
 - P-emission

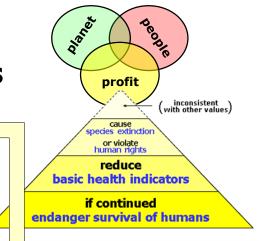
Min Input - Max Productivity & Welfare - Min Emission (P, N, AB-R)

1. Sourcing & Production of ingredients

Sustainability of blood products

- 1. Blood collected at slaughterhouses (anti-coagulant added, refrigerated)
- 2. Transported
- 3. Centrifuged → Hb / Plasma
- 4. Dried

Source : EU animal by-products


EU labor laws

→ guarantees on human rights aspects

EU animal welfare and production laws

- → guarantees on animal welfare aspects (production and slaughter practices)
- → guarantees on environmental issues

Type: Not purpose-grown Not purpose-bred

Soybean meal used to be a by-product in the production of soy oil for human consumption

Fish meal used to be a by-product but demand rose above availability *⇒* sustainability **↓**

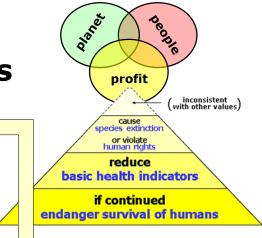
Sustainability of blood products

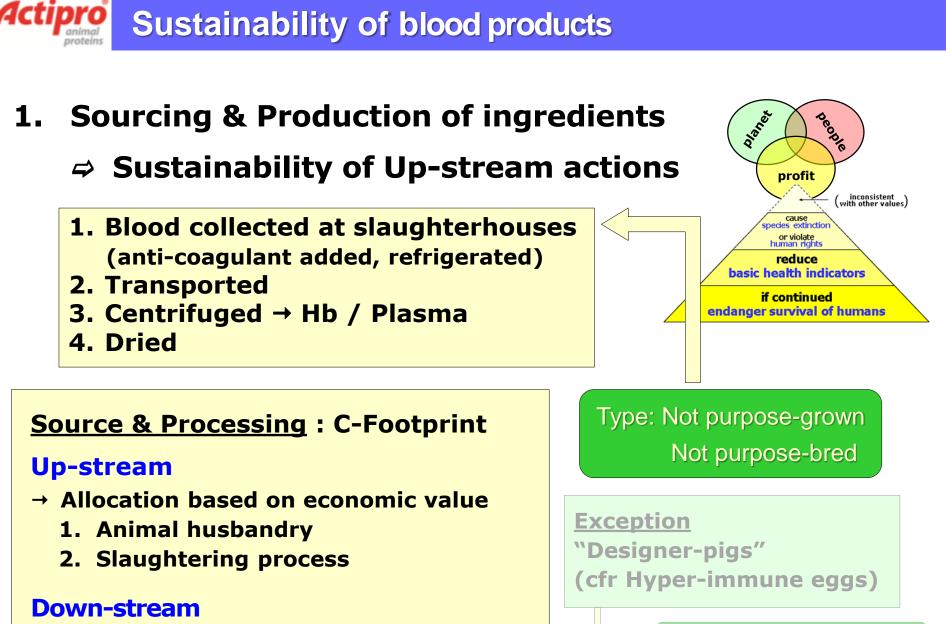
- 1. Blood collected at slaughterhouses (anti-coagulant added, refrigerated)
- 2. Transported
- 3. Centrifuged → Hb / Plasma
- 4. Dried

Source : EU animal by-products

EU labor laws

→ guarantees on human rights aspects

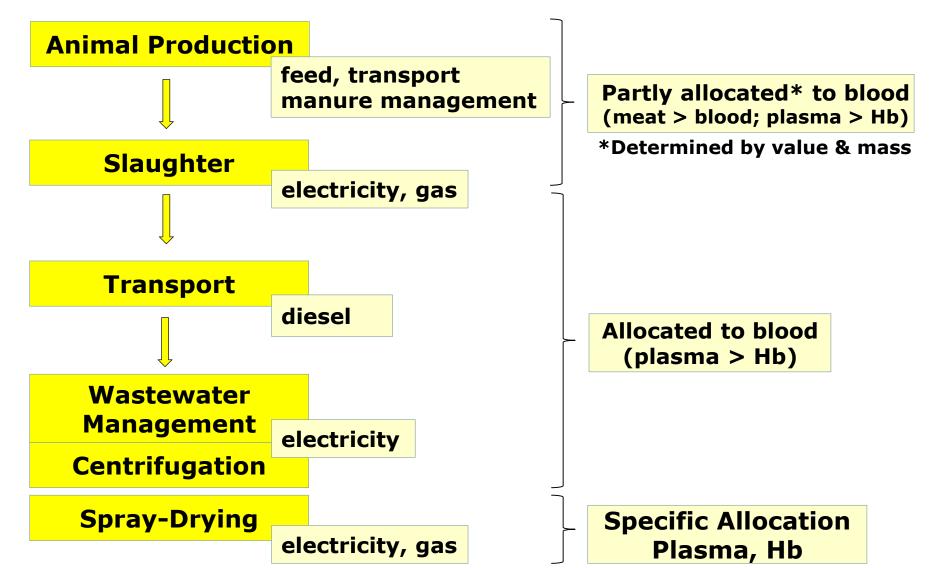

EU animal welfare and production laws


- → guarantees on animal welfare aspects (production and slaughter practices)
- → guarantees on environmental issues

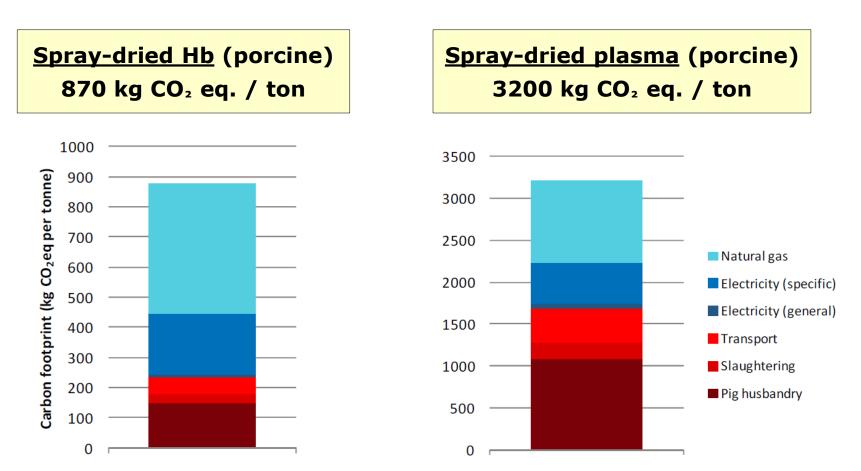
Type: Not purpose-grown Not purpose-bred

Exception "Designer-pigs" (cfr Hyper-immune eggs)

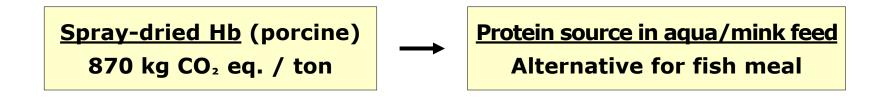
↔ Cat-3 EGG products

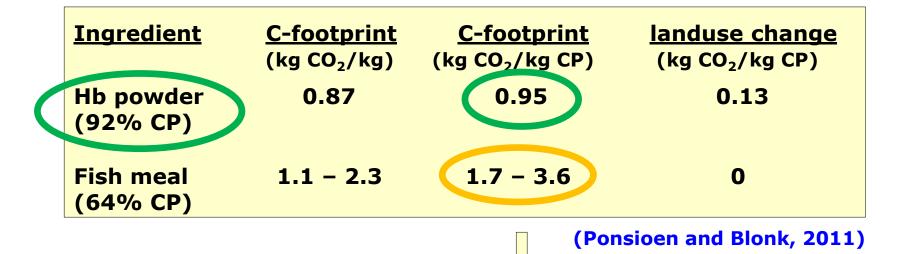


↔ Cat-3 EGG products

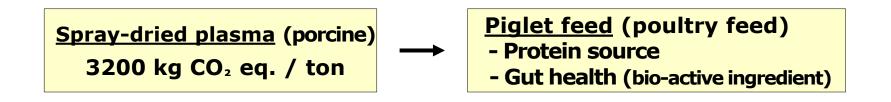

→ Transport of blood (diesel)

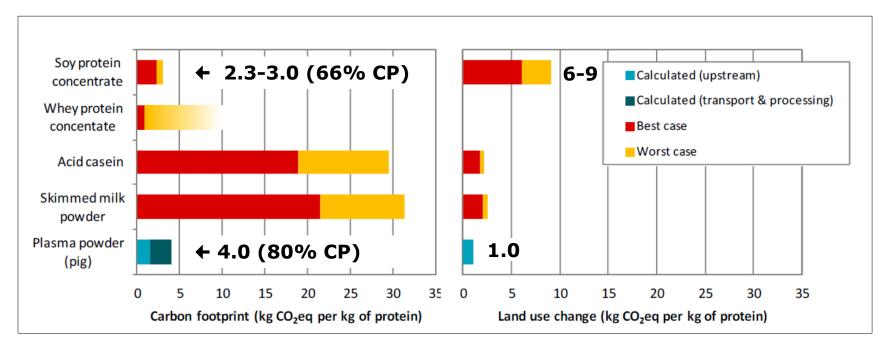
→ Processing





Carbon footprint of spray-dried Hb (left) and plasma (right) (Ponsioen and Blonk, 2011)





Carbon footprint per kg protein is 44% to 74% lower in dried Hb compared to fish meal

(Ponsioen and Blonk, 2011)

- Sourcing & Production of ingredients
 ⇒ Sustainability of Up-stream actions
- 2. Used as feed ingredients
 - Nutrient Utilisation (productivity)
 - Gut Health (animal health/welfare, antibiotics use, productivity)
- 3. Sustainability of down-stream effects
 - ⇒ N-emission
 - P-emission

Min Input - Max Productivity & Welfare - Min Emission (P, N, AB-R)

Sustainability of blood products

Protein Source

ingredient

Utilisation

bioavailability anab/katab

Emission

additives

processing

N-emission P-emission

Vegetal - Animal protein sources

- Amino acid profile : diet ↔ requirements
- Bioavailable AA-profile
- Factors that "come-along" with the protein
 - ANF's processing

Phosphorous (phytate-P)

Bio-security issues

Balancing amino acid profile = combining complementary ingredients

NRC requirements (ad libitum fed, 90% DM)

% _{CP}	Pig 3-5 kg	Pig 5-10 kg	wheat	corn	Hb	SDPP	whole egg
Arg	2,3	2,3	5,0	4,9	3,8	5,7	6,6
His	1,8	1,8	2,4	3,0	6,8	2,9	2,4
llo	3,2	3,1	3,8	3,7	0,6	3,4	5,2
Leu	5,8	5,6	7,2	13,0	13,3	9,6	9,1
Lys	5,8	5,7	3,0	3,2	9,2	8,1	7,6
Met	1,5	1,5	1,8	2,2	0,7	1,0	4,0
Met + cys	3,3	3,2			1,6	4,4	6,6
Phe	3,5	3,4	5,0	5,1	7,0	5,7	5,2
Phe + tyr	5,4	5,3			9,4	10,7	9,9
Thr	3,8	3,6	3,2	3,7	4,0	6,0	5,5
Try	1,0	1,0	1,4	0,8	1,5	1,6	1,6
Val	4,0	3,9	4,7	4,9	9,1	6,0	6,3
1 st limit	ing AA		Lys	Lys	Ile	Met	
2 nd limit	ing AA		Thr	Try	Met		

Balancing amino acid profile = Balancing bio-available amino acids Minimizing N and P emission

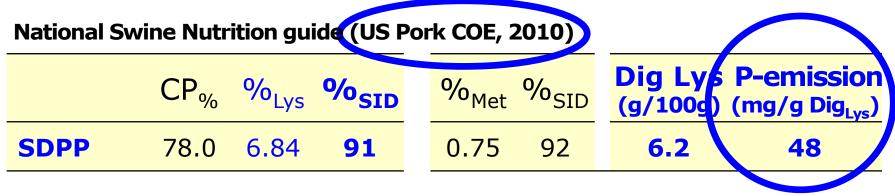
National Swine Nutrition guide (US Pork COE, 2010)

	$CP_{\%}$	% _{Lys}	% _{SID}		% _{Met}	% _{SID}	Lys _{SID} (%) P% (P _{aD} %)
SDPP	78.0	6.84	91		0.75	92	6.2		1.48 (80)
Egg (dried)	47.0	3.09	81		1.48	90	2.5		0.67 (<50)
Fish meal	62.9	4.81	95		1.77	94	4.6		→ <u>3.04</u> (77)
(MBM)	(52.8)	(2.76)	(80)		(0.72)	(83)	(2.2)		(4.63; (75))
				-					
SBM	44.0	2.83	89		0.61	91	2.5		→ 0.65 (<u>20</u>)
SBPC	64.0	4.20	95		0.90	94	4.0		0.81 (<33)
Wheat bran	15.7	0.64	71		0.25	79	< 0.5		1.20 (50*)
	CVB, 2004 $\begin{cases} \downarrow \\ P = 0.65; P_{aD} = 39 \\ P = 2.56; P_{aD} = 77 \end{cases}$								

Balancing amino acid profile = Balancing bio-available amino acids Minimizing N and P emission

National Swine Nutrition guide (US Pork COE, 2010)

	$CP_{\%}$	% _{Lys}	% _{SID}		% _{Met}	% _{SID}	Lys _{SID} (%	6) P-em. (g/kg)
SDPP	78.0	6.84	91		0.75	92	6.2	3.4
Egg	47.0	3.09	81		1.48	90	2.5	> 3.3
Fish meal	62.9	4.81	95		1.77	94	4.6	7.0
(MBM)	(52.8)	(2.76)	(80)		(0.72)	(83)	(2.2)	(11.6)
SBM	44.0	2.83	89		0.61	91	2.5	➡ 5.2
SBPC	64.0	4.20	95		0.90	94	4.0	> 5.4
Wheat bran	15.7	0.64	71		0.25	79	< 0.5	6.0*
CVB, 2004 P-emission = 4.0 P-emission = 5.9								


Balancing amino acid profile = Balancing bio-available amino acids Minimizing N and P emission

National Swine Nutrition guide (US Pork COE, 2010)

	$CP_{\%}$	% _{Lys}	% _{SID}	% _{Met}	% _{SID}	Lys _{SID} (%)	aD P / P-em. (mg/g Lys _{sip})
SDPP	78.0	6.84	91	0.75	92	6.2	190 / 48
Egg	47.0	3.09	81	1.48	90	2.5	< 136 / > 132
Fish meal	62.9	4.81	95	1.77	94	4.5	518 / 158
(MBM)	(52.8)	(2.76)	(80)	(0.72)	(83)	(2.2)	(1577 / 527)
SBM	44.0	2.83	89	0.61	91	2.5	52 / 208
SBPC	64.0	4.20	95	0.90	94	4.0	< 67 / > 135
Wheat bran	15.7	0.64	71	0.25	79	< 0.5	1200 / 1200

Balancing amino acid profile = Balancing bio-available amino acids Minimizing N and P emission

Depends on the source: e.g. US vs EU

- Different anti-coagulants used (US phosphate-based; EU e.g. Na-citrate)
- EU regulations for waste water management
 - (e.g. 2 ppm P, 15 ppm N)
- US Pork COE: 1.48% P_{tot} / EU-SDPP: < 0.2% P_{tot} (if citrate is used)
- + Bioavailable P and + Unavailable P in SDPP if citrate is used

- Sourcing & Production of ingredients
 ⇒ Sustainability of Up-stream actions
- **2. Used as feed ingredients**
 - Nutrient Utilisation (productivity)
 - Gut Health (animal health/welfare, antibiotics use, productivity)
- 3. Sustainability of down-stream effects
 - ⇒ N-emission

Min Input - Max Productivity & Welfare - Min Emission (P, N, AB-R)

3. Improving Gut Health

- ⇒ ↑ productivity and animal welfare
- → reed for antibiotics and antibiotics-resistance

AB are over-used → Regulations on AB-reduction are needed But: deprivation of AB compromises productivity and welfare

Clinical disease	\rightarrow	✦ Animal Welfare; ✦ productivity
Sub-clinical disease	\rightarrow	

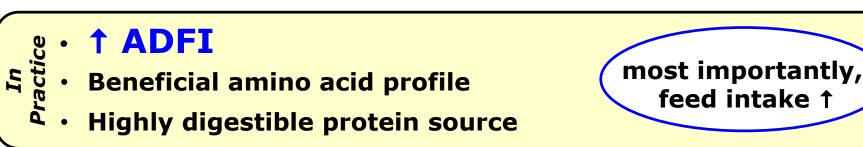
Therapeutic AB: Yes	Prophylactic AB	: No
	Growth-promoting	AB : No

Need for sustainable alternatives				
e.g. Reducing infection pressure (on-farm biosecurity)				
e.g. Improving gut health (bio-active ingredients)				

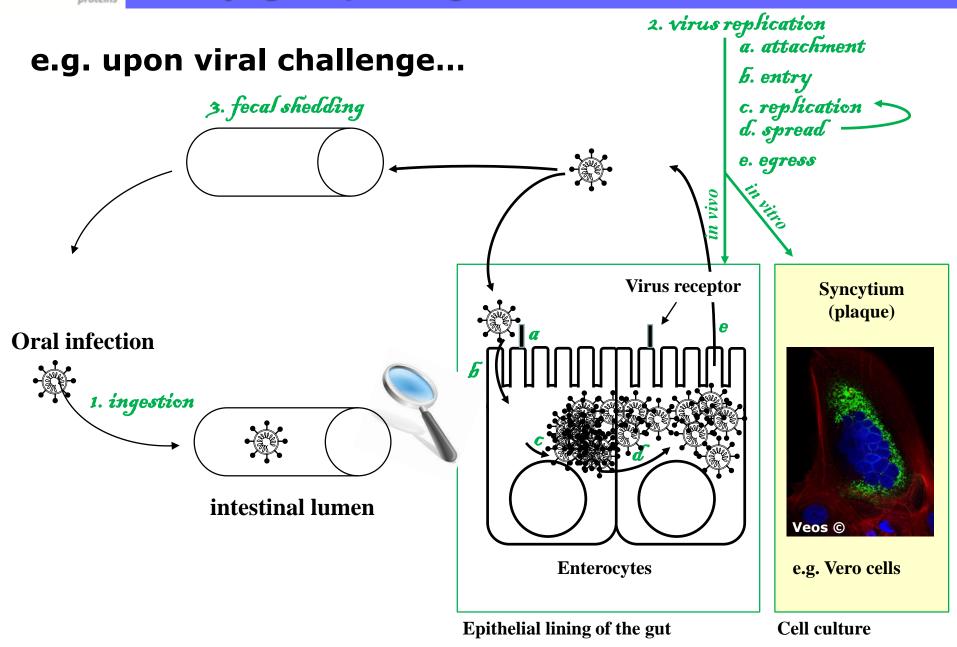
3. Improving Gut Health

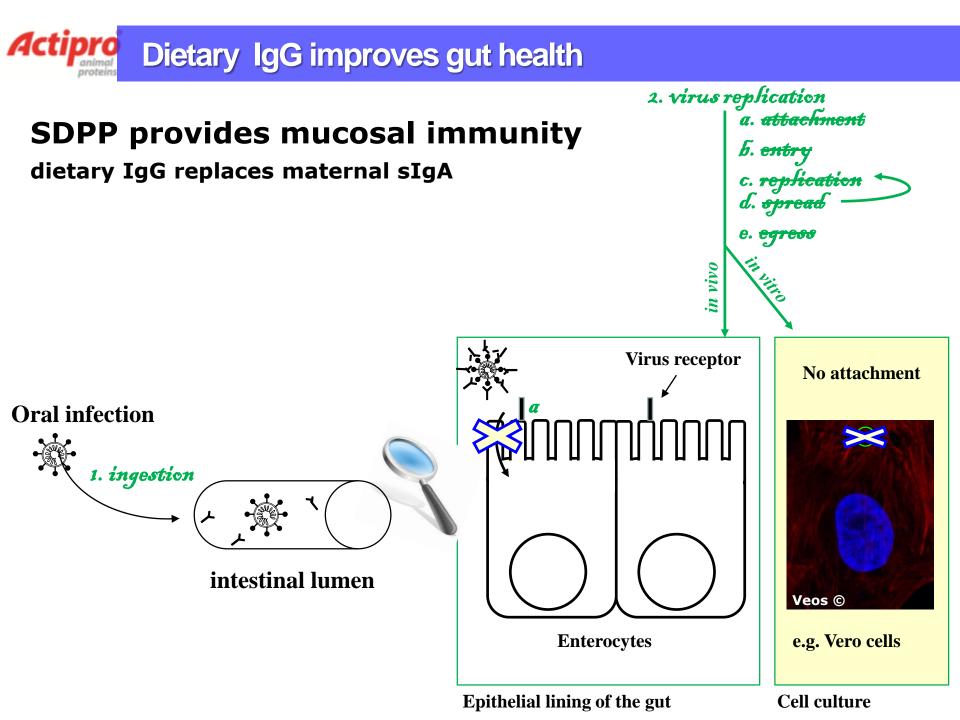
- →

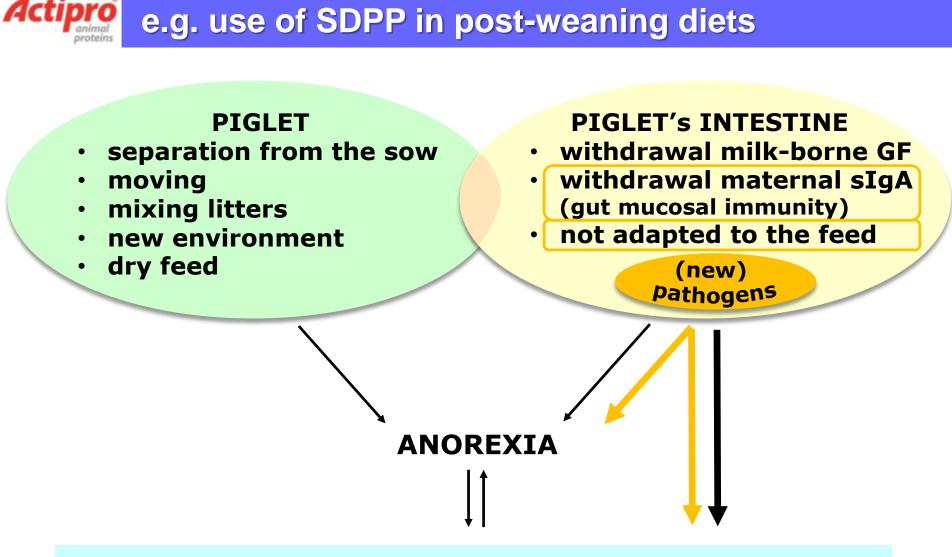
 ↑ productivity and animal welfare
- → reed for antibiotics and antibiotics-resistance


<u>Plasma</u>

- animal-based, sustainable protein source (dig Lys 1)
- low content of ANF (e.g. no phytate)
- bio-active glycoproteins
 - IgG (substitute for sIgA from sow milk)
 → offers passive mucosal immunity to the gut
 - Growth factors (substitute for milk-borne GF)
 - $\rightarrow\,$ promotes maturation and integrity of the intestinal lining
 - Non-Ig "binders" (e.g. lectins)


<u>Use</u>: Piglet feed (milk replacers, creep feed, post-weaning diets) [Poultry feed (productivity ↑; necrotic enteritis ↓)]


3. Improving Gut Health : plasma


- **Improves (early) post-weaning performance of piglets**
- **Reduces clinical disease / diarrhea in challenge trials**
- **Effects on ADFI, ADG, G:F are more pronounced in challenge trials**
- In Literature IgG and other glycoproteins diminish pathogen adhesion
 - Improves intestinal barrier (e.g. tight junctions)
 - Can increase brush-border enzyme activity / villus height
 - Reduces immune activation (influx immune cells,...)

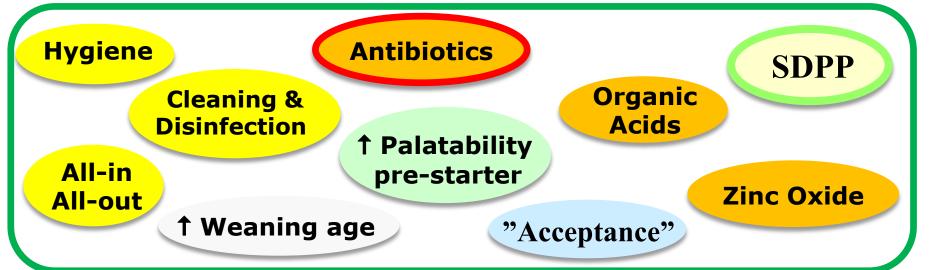
Actipition Dietary IgG improves gut health

Changes in Intestinal Mucosa

Impaired Functionality (absorptive and digestive capacity \downarrow)

Impaired Integrity (vulnerability \uparrow)

Actipion e.g. use of SDPP in post-weaning diets


Concerns

- Weight dip
- Diarrhea
- Mortality

Multi-factorial etiology

- Post-weaning anorexia
- Impaired digestion & absorption
- Increased vulnerability to pathogens
 - loss of intestinal integrity
 - withdrawal of maternal sIgA
 - availability of undigested food
- Infection pressure

Solutions (targets : environment, piglets, feed or drinking water)

- **1.** Sourcing & Production of ingredients
 - Sustainability of Up-stream actions
- 2. Used as feed ingredients
 - Nutrient Utilisation (productivity)
 - **Gut Health** (animal health/welfare, antibiotics use, productivity)
- 3. Sustainability of down-stream effects
 - N-emission
 - P-emission
 - Antibiotics resistence

Min Input - Max Productivity & Welfare - Min Emission (P, N, AB-R)

Blood products as sustainable ingredients in livestock nutrition: protein source and alternative to antibiotics

