


Hematology-2014 2<sup>nd</sup> International Conference on Conferences Accelerating Scientific Discovery

September 29-October 01, 2014 Baltimore, USA

PATTERN OF DONATION AND SOME HAEMATOLOGICAL INDICES OF BLOOD DONORS IN SOKOTO, NIGERIA.

**By ISAAC IZ** 

# Introduction

#### **Problem Statement:**

- 100 million people sustain life threatening injuries, and more than 5 million die for lack of blood supply yearly.
- Only 2 million out of 80 million units are donated in Sub Saharan Africa (SSA) [WHO, 2002].
- Access to safe and adequate blood and blood product remain a mirage in SSA, thirty years after the first WHO resolution (WHA28.72) to address the issue.

## Introduction cont.

#### **Causes of allogenic blood demand**

- Escalating elective surgery,
- Various safety introductions in blood transfusion.
- Accidents.
- Infections like HIV and Malaria.
- Terror attacks and PPH have all conspired to ensure that allogenic blood remains very much a vital but limited asset

# Approach

- One hundred and thirty -six consecutively recruited whole blood donors engaged in the study.
- Donors were recruited having given informed consent after counseling
- Donors were grouped according types.
- Haematological parameters; packed cell volume, total white cell count and platelet count were assessed using standard techniques

## Study area

- Sokoto State is located in the extreme North Western part of Nigeria near to the confluence of the Sokoto River and the Rima River.
- Sokoto is, on the whole, a very hot area. maximum daytime temperatures 40 °C (104.0 °F). The warmest months are February to April when daytime temperatures can exceed 45 °C (113.0 °F).
- Report from the 2007 National Population Commission indicated that the state had a population of 3.6 million.




Three milliliters of blood sample collected into (K2EDTA) anticoagulated blood containers.

- The determination of PCV was by using a microhaematocrit centrifuge (Hawksley, UK).
- Platelet count and Total White Cell count was determined using standard methods.

## **Statistics**

- Statistical analyses were conducted using SPSS (version 11) software.
- Comparisons between populations were made using the Student's t-test for parametric data and the Mann-Whitney test for non-parametric data.
- An alpha value of < 0.05 denoted a statistically significant difference.</p>
- Correlation was compared using a version of linear regression analysis.



| Table 1. Hachatological values among the utility groups |                  |               |                 |         |         |
|---------------------------------------------------------|------------------|---------------|-----------------|---------|---------|
| Haematological                                          | Donor Class      |               |                 | t-value | p-value |
| Parameters                                              | Voluntary        | Family        | Commercial      |         | -       |
|                                                         | Non-             | Replacement   | Remunerated     |         |         |
|                                                         | Remunerated      |               | Donors          |         |         |
| PCV (%)                                                 | $40.25 \pm 4.46$ | 41.02±4.46    | 28.10±4.15      |         | 0.001   |
| TWBC (x 10 <sup>9</sup> /L)                             | 9.38±2.00        | 6.37±2.79     | $5.39 \pm 3.44$ |         | 0.20    |
| PLC (x 10 <sup>9</sup> /L)                              | 390.23±64.70     | 271.44±109.10 | 132.50±40.30    |         | 0.0001  |

Table 1: Haematological values among the donor groups

*Key: PCV = Packed Cell Volume TWBC = Total White Cell Count PLC = Platelet Count*  Table 2: Comparison of Haematological values of Voluntary and Commercial remunerated donors

| Haematological              | Voluntary Non- | Commercial                | t-value | p∙value |
|-----------------------------|----------------|---------------------------|---------|---------|
| Parameters                  | Remunerated    | <b>Remunerated Donors</b> |         |         |
| PCV (%)                     | 40.25± 4.46    | 28.10±4.15                | 5.28    | 0.0001  |
| TWBC (x 10 <sup>9</sup> /L) | 9.38±2.00      | 5.39±3.44                 | 2.89    | 0.11    |
| PLC (x 10 <sup>9</sup> /L)  | 390.23±64.70   | 132.50±40.30              | 10.37   | 0.0001  |

**Key:** PCV = Packed Cell Volume TWBC = Total White Cell Count PLC = Platelet Count

# Table 3: Comparison of Haematological values of Family Replacement and Commercial remunerated donors

| Haematological              | Family        | Commercial Remunerated | t-value | p-value |
|-----------------------------|---------------|------------------------|---------|---------|
| Parameters                  | Replacement   | Donors                 |         |         |
| PCV (%)                     | 41.02±4.46    | 28.10±4.15             | 8.82    | 0.0001  |
| TWBC (x 10 <sup>9</sup> /L) | 6.37±2.79     | 5.39±3.44              | 1.27    | 0.20    |
| PLC (x 10 <sup>9</sup> /L)  | 271.44±109.10 | 132.50±40.30           | 3.99    | 0.0001  |

*Key: PCV = Packed Cell Volume TWBC = Total White Cell Count PLC = Platelet Count* 

- Commercially remunerated blood donors makes up (14.71%).
- They are often associated with the following problems
- □ High Prevalence of TTIs [Ejele OA et al 2005].
- They may be poor in health and undernourished;
- They are more likely to give blood more often than recommended,
- They have high risk behaviors.

- Voluntary non remunareted donors make up 5.88% in this study.
- Family replacement donors constituted a significant number of blood donors (79.41%).
- The disadvantages of this method of blood donation include;
- Patients or their relatives are under intense strain and providing blood puts additional responsibility and stress on them.

- Undue pressure may cause members of the family to give blood, even when they know that donating blood may affect their own health.
- Or even at risk of transmission of TTIs.
- It is difficult for a country's transfusion needs to be met solely relying on family replacement donations [Bates I and Hassall O, 2010].
- Also, there is potentially at risk of producing antibodies to clinically significant antigen/s by spouse

- The trend of PCV and platelet count follows the pattern; commercial remunerated donors < family replacement donors < voluntary non-remunerated donors.
- A positive and significant correlation between commercial remunerated blood donation and low PCV and platelet count [Jeremiah ZA, et al. 2010].

Hindrances of accessing safe and adequate blood

- National blood transfusion services and policies are often lacking.
- Lacking of appropriate infrastructure
- Inadequate trained personnel
- □ Financial resources are often inadequate.
- Predominance of family replacement and
- Presence of commercially remunerated blood donors,

Challenges of safe and effective blood transfusion

- □ High incidence of TTIs.
- Reliance on commercial and family-replacement donors.
- Inadequate knowledge.
- Cultural hindrances –related challenges.
- Transfusion of whole blood.
- Lack of effective stewardship.
- Absence of red cell alloimmunization testing services.
- Sub optimal usage of alternatives to allogenic blood.

Challenges of safe and effective blood transfusion continue

- Absence of indication coding tool to facilitate effective use of blood products.
- Absence of evidence- based approaches to the management of major haemorrhages.
- Absence of uninterrupted power supply and challenge of cold chain management of blood product and
- Absence of regular stock of Emergency group O Negative blood for emergency use.

#### Conclusion

- Family and commercial remunerated donation still predominate in this study.
- The findings from this study indicates that the PCV and platelet count is significantly lower among commercial remunerated donors.
- And it re-emphasize the need to formulate policies on ways to seriously and innovatively attract and retain voluntary non-remunerated blood donors.

# References

- 1. World Health Organization. Global database on blood safety: report 2001--2002. Available at <u>http://www.who.int/bloodsafety/GDBS\_Report\_2001-2002.pdf</u>).
- 3. World Health Assembly resolution WHA58.13 (Blood Safety).
  Proposal to Establish World Blood Donor Day.
  WHA58/2005/REC/1.2005.
- 4. National Population Commission (NPC). National Census Figures, Abuja, Nigeria. 2007.
- 5. Jeremiah ZA, Koate BB. Anaemia, iron deficiency and iron deficiency anaemia among blood donors in Port Harcourt, Nigeria. Blood Transfus. 2010 Apr; 8(2):113-7.
- 6. Ejele OA, Erhabor O, Nwauche CA. Trends in the prevalence of some transfusiontransmissible infections among blood donors in Port Harcourt, Nigeria. Haema. 2005; 8(2):273-277.

#### Acknowledgement

I acknowledge the contributions of the following
 research colleagues; Erhabor O, Hussain AU,
 Abdulrahaman Y and the Haematology staff of the
 Usmanu Danfodiyo University, Sokoto.

## **Appreciations**

#### **THANK YOU FOR LISTENING.**



September 29-October 01, 2014 Baltimore, USA