INTEREST OF VESTIBULAR EVALUATION IN SEQUENTIALLY IMPLANTED CHILDREN: PRELIMINARY RESULTS

I. Pauwels - B. Devroede - A-L. Mansbach

ENT Department, Queen Fabiola University Children's Hospital Brussels

World Pediatrics Congress 2017 - Orlando

Queen Fabiola University Children's Hospital

Hôpital Universitaire des Enfants Reine Fabiola

- Many children with profound sensorineural hearing loss also display vestibular disorders (20 – 85%)
- At present there is evidence supporting:
 - The additional benefit of having bilateral cochlear implantation in deaf children
 - a high probability of postoperative vestibular modifications
 Vestibular modifications in 50% of the cases with 10% of complete
 vestibular loss after CI

Cushing et al, 2008; Abramides et al, 2009; De Kegel et al, 2012 Wiener-Vacher et al, 2008

ADDITIONAL BENEFIT OF BILATERAL IMPLANTATION IN CHILDREN

- \rightarrow Better sound localization
- \rightarrow Better speech perception in noise
- \rightarrow Better quality of life

A SHORT INTRODUCTION TO VESTIBULAR PHYSIOLOGY

Labyrinth

- Cochlea
- Vestibule
 - \rightarrow saccule \rightarrow utricle

Otolith organs

Semi-circular canals

A SHORT INTRODUCTION TO VESTIBULAR PHYSIOLOGY

Vestibular receptors (5)

Ampullary crest

 \rightarrow angular accelerations

Utricular and saccular maculae

- \rightarrow linear accelerations
- \rightarrow gravity

Functions

- Gaze stabilization (VOR)
- Body/head stabilization and postural adjustment (VCR – VRS)

A SHORT INTRODUCTION TO VESTIBULAR PHYSIOLOGY

Vestibulo ocular reflex

- Stabilizes gaze during head movement
- Physiological nystagmus
- · Generated by vestibular receptors
 - -aVOR (SCCs)
 - -tVOR (otolithic organs)
- Most used in daily clinical practice is horizontal aVOR

Nystagmus physiologique

VESTIBULAR EVALUATION IN SEQUENTIALLY IMPLANTED CHILDREN: OBJECTIVE

- The objective of this study is to evaluate
 - the impact of cochlear implants on vestibular function in sequential implantation
 - the risk of inducing a complete areflective status after second implantation

- From January 2012 to May 2015
- 26 candidates for contralateral implantation

Population characteristics (n=26)						
Mean age at first examination	6,75 (range: 1 - 13)					
Brand of Implants	Cochlear					
Cochleostomy insertion site	Antero-inferior					
Etiology						
Syndromic	6					
Genetic	7					
Postmeningitic	2					
CMV	1					
ANSD	2					
Unknown	8					
CT scan, MRI						
Normal	19					
Vestibular malformation	3					
Cochlear malformation	1					
Cochleo-vestibular malformation	3					

POPULATIO

- Vestibular assessment *before* and *3 months after* 2nd implantation
 - > Complete vestibular clinical evaluation
 - Patient history (vestibular symptoms?)
 - Postural stability, gait, and coordination
 - Oculomotor assessment
 - Spontaneous or gaze-evoked nystagmus
 - Short neurological evaluation
 - > Horizontal canal evaluation (aVOR)
 - Halmagyi test
 - VOR testing on rotary chair
 - Bicaloric testing with videonystagmoscopy
 - > Otolithic evaluation
 - cVEMP exam with tone bursts

VESTIBULAR EVOKED MYOGENIC POTENTIALS: C-VEMPS

- Elicited from the SCM muscle
- Assesses saccular and inferior vestibular nerve function (sacculospinal pathway)
- Recorded with standard ABR equipment and surface electrodes
- Stimulus: 500 Hz tone bursts, 74 dBnHL bone conduction
- P1-N1 wave, amplitude and latencies
- *<u>Pitfalls</u>: SCM contraction*
 - Otitis media with effusion

CALORIC TEST

- Bithermal caloric stimulation: ear irrigation at 30°c and 44°c during 30 sec
- Observation of eye movements by videonystagmoscopy (or VNG)
- Information about lateral SCCs only
- Canal paresis if Jonkees formula values ≥ 15%
- Not well tolerated in young children

RESULTS VESTIBULAR STATUS OF THE TEST GROUP

Vestibular status before contralateral implantation

Before contralateral implantation

- ► 31% normal bilateral vestibular function
- 61% unilateral or bilateral hyporeflexia
- ► 8% bilateral areflexia

🖬 hyporeflexia 📓 normal function 📓 areflexia

VEMP responses

Results c-VEMP testing

Otolithic function modifications

- ► Before 2nd CI: present in 19 patients
- ► After 2nd CI: present in 15 patients

 \rightarrow 4/24 patients lost their VEMP responses (16%)

Follow-up group, n=24

- Horizontal canal function modifications
- Identical response: 18 patients (13 reactive 5 areflective)
- Decrease: 3 patients
- ► Increase: 2 patients (hyperexcitability?)
- ► Disappearance: 1 patient

→ Different responses in 6/24 patients

Results bicaloric testing

DISCUSSION: CVEMP TESTING

Only presence/absence of cVEMP response was considered

- Thresholds could not be determined for all children
- Amplitude strongly depends on muscle contraction
- Biofeedback allows more precision

- Vestibular status before first implantation is mostly unknown
- Compliance for VEMP testing was high, in contrast to compliance for caloric testing

DISCUSSIC

- 37% of patients had their vestibular function modified after their second implantation. However, none of the patients with a normal vestibular status at the 2nd implanted ear became areflectic
- 12% (3/24) patients completely lost their saccular function and 4% (1/24) became areflectic after second implantation

- In patients with vestibular function modifications, one third manifested transitory postoperative vestibular symptoms (3/9).
 Age-related? (Chi-square test, p = 0,079)
- No significative correlation between vestibular loss and inner ear malformation (Chi-square test, p = 0,8077)

VESTIBULAR EVALUATION IN SEQUENTIALLY IMPLANTED CHILDREN: CONCLUSIONS

- High prevalence of vestibular dysfunction among our test group
- Horizontal canal function seems more preserved than saccular function
- 16 % of our children presented a loss of saccular and/or horizontal canal function after second implantation.
 Amongst these children, which percentage will have balance problems in older age?
- Larger series of patients are required in order to confirm our results about the impact of contralateral implantation on balance function
- This study confirms the importance of vestibular assessment before sequential implantation to prevent bilateral vestibular areflexia, especially if
 - there is hyporeflexia on the not yet implanted ear
 - independent walking is not acquired yet

CLINICAL CASE

26 months old girl, bilateral sequential cochlear implantation Horizontal canal areflexia

VESTIBULAR EVALUATION IN SEQUENTIALLY IMPLANTED CHILDREN: PRELIMINARY RESULTS

THANK YOU FOR YOUR ATTENTION

Vestibular evaluation in sequentially implanted children: preliminary results

Complete test results

Patients	Etiology	P1/N1 CI contralat, pre	P1/N1 CI contralat, post	Variation A°	Caloric test pre 2nd Cl	Caloric test after 2nd Cl	Imaging
1	Unknown	✓	65 db	=	Normal	Normal	Vestibular dysplasia
2	Genetic	~	65 db	=	Hyporeflexia left	Symmetrization (right צ)	Normal
3	Syndromic	0	0	=	Areflexia	Areflexia	Normal
4	Syndromic	74 db	0	*	Bilateral hyporeflexia	Bilateral hyporeflexia	Normal
5	Unknown	1	60 db	=	Hyporeflexia right	Normal (right 7 , hyperexcitability?)	Normal
6	Genetic	✓	65 db	И	Normal	Normal	Normal
7	Post meningitic	*	60 db	=	Hyporeflexia left	Symmetrization (right 뇌)	Cochlear ossification
8	Syndromic	✓	65 db	=	Areflexia right	Areflexia right	Normal
9	Unknown	0	0	=	Hyporeflexia left	Hyporeflexia left	Normal
10	Unknown	0	0	=	Hyporeflexia right	Hyporeflexia right (but オ right)	Normal
11	Genetic	74 db			Normal		Normal
12	Unknown	~			Important hyporeflexia left		LVAS
13	Syndromic	60 db	60 db	=	Normal	Normal	cochleo-vestibular dysplasia
14	Syndromic	0	0	=	Bilateral hyporeflexia +++	Bilateral hyporeflexia +++	Normal
15	Genetic	65 db	74 db	=	× (tubes)	Normal	Normal
16	Unknown	60 db	65 db	=	Normal	Normal	Normal
17	Genetic	✓	✓	=	Normal	Normal	Normal
18	Unknown	✓	✓	=	Hyporeflexia left	Hyporeflexia left	Normal
19	ANSD	*	✓	=	Hyporeflexia right	Bilateral hyporeflexia	Normal
20	ANSD	✓	0	*	Areflexia	Areflexia	Vestibular dysplasia
21	Genetic	✓	✓	=	× (tubes)	Hyporeflexia left	Normal
22	Post meningitic	0	0	=	Areflexia	Areflexia	Cochleo - vestibular ossification
23	Genetic	4	0	×	Bilateral hyporeflexia	Bilateral hyporeflexia	Normal
24	unknown	~	~	=	Normal	Normal	Normal
25	Syndromic	✓	0	×	Hyporeflexia right	Areflexia	LVAS + cochleo-vestibular dysplasia
26	CMV	✓	✓	И	Areflexia	Areflexia	Normal