# Role of HIV-1 Nef in Acceleration of HCV-Mediated Liver Disease

In-Woo Park, Ph.D. Cell biology and Immunology University of North Texas Health Science Center



National Institute of Diabetes and Digestive and Kidney Diseases

#### **HIV-1/HCV co-infection**

- \* Shared routes of infection:
  - sexual contact
  - blood stream
  - IDU
- \* Common with ~ 30% of all HIV-1-infected persons

**Co-infection has profound, adverse consequences.** 

- elevate HCV viral load.
- expedite HCV-mediated liver disease progression.
- two-fold acceleration of fibrosis
- five-fold higher risk of cirrhosis-related liver complications, etc.
- Cirrhosis and end-stage liver disease 50% of all deaths in co-infected patients - leading cause of morbidity and mortality in Western countries.

#### **Genomic and virion structure of HIV-1**



callutheran.edu

| Structural:        | Gag, Pol, and <mark>Env</mark> |
|--------------------|--------------------------------|
| <b>Regulatory:</b> |                                |
| Early:             | Tat, Rev, and Nef              |
| Late:              | Vpr, Vpu, Vif                  |

### **Distinct target cells for infection**

1. Receptor/co-receptors **A. HIV-1** T helper cells CCR5 Monocytes/microphage CD4 Dendritic cells, etc CXCR4 **B. HCV** LDLR **CD81 Hepatocytes** SR-B1 **Claudin-1** Occludin

2. Fundamentally different life cycles

- 1. Direct infection of HIV-1 into HCV-infected hepatocytes/HSC
- 2. Indirect effect
  - A. Viral proteins, such as Env, Tat, and Nef
  - B. Dysfunction immune systems by HIV-1 and/or viral proteins

### Replication of HIV-1 in human hepatocytes



#### **Viral protein candidates**

- 1. Env interact with CXCR4 or CCR5 co-receptor
  - → enhance HCV replication in the replicon
  - → induce apoptosis
- 2. Tat diffusible protein

→ enhance hepatocarcinogenesis in transgenic mice

## Relevant Nef functions for up-regulation of HCV replication

- 1. Induces formation of conduits (filopodia) and secretion of exosomes.
- 2. Regulates the amount of intracellular lipids by modulating expression of lipid molecules.
- 3. Forms complexes with and thereby activates several cellular kinases, such as the Src family of tyrosine kinases.
- 4. Alters host immune responses.

#### **Exosome-mediated Nef transfer?**



Virol. J. 2011

### Transfer of Nef protein from Jurkat T cells into hepatocytes.



В.





### Nef is transferred from HIV-1-infected cells to hepatocytes



### **Biological significance of Nef transfer**

- 1. Up-regulation of HCV replication
- 2. Generation of ROS
- 3. Effect on alcohol-mediated up-regulation of HCV replication
- 4. Others

### Nef up-regulates HCV subgenomic replicon expression



#### **Nef-mediated induction of ROS**





### Effect of Nef on ethanol-mediated up-regulation of HCV replication



#### Summary



Dohun Pyeon, Ph.D. (UCSM) Khalid Timami, Ph.D. Johnny J He, Ph.D Linden Green, Ph.D. (IUSM) Jinfeng Wang, Ph.D. Myeong-Gwi Ryou, Ph.D. Yan Fan Xiaoyu Luo

### Thank you all! inwoo.park@unthsc.edu