

Drug Measurements at the Pharmacological Target Site for Individualized Pediatric Cancer Treatment

Imke H. Bartelink

Clinical Pharmacologist Department of Medicine, division of hematology and oncology of the University of California San Francisco CA

Children are not small adults!

- Different **blood exposures** adults and children
- Only some trials account
 for different plasma
 pharmacokinetics in age categories

1. Dose/m2 or /kg \neq uniform exposure

Dosing schedule accounting for age-related pharmacokinetics, example busulfan

- Exposure: Area Under the Concentration-time curve (**AUC**) = dose*bioavailibility/Clearance
- Dose optimized = $AUC_{target} * Dose_i / AUC_i$

1. Dose/m2 or /kg \neq uniform exposure

Other examples of PK-PD based individualized pediatric doseing

- Midazolam in based on PK difference in children at intensive care unit (PICU) and non-PICU¹
- Warfarin dosing in children based on exposure-INR²
- Vigabatrin, assessment of dose-response children and adults³
- Esomeprazole PK in children and adults³
- Adalimumab, exposure-response, PK, efficacy and safety assessed in pediatric crohn's disease.³

4

Demonstrating Efficacy For Oncologic Agents Remains a Challenge

Beyond genomics, challenges in pediatric drug development

	Obstacle	Observed in	Pediatric predictions addressed in this presentation
1	Dose/m2 or /kg \neq uniform exposure	Children of different ages	Age and drug specific dosing needed
2	Concentration plasma ≠ tumor	Adults	Higher variability
3	Variability in drug penetrance per tumor type	Adults	Translation difficult
4	Heterogeneity in spatial + temporal drug distribution	Adults and children	Similar in adults and children
5	Variability in intracellular uptake and transformation	Adults and children	Developmental variability
6	Implement target site-outcome association	Adults	Larger barriers

Why is drug distribution in tumor tissue heterogeneous?

Adapted from Nerini et al. CPT 96 (2): 224-238,2014

Why do we care to measure drug at the site of action?

- Children are often under or over-treated depending on age and disease.
 - Toxicity with higher exposures can have life-long side effects
 - Sub-therapeutic therapy often results in failure of clinical trials
- In basket-trials multiple diseases are grouped together
- Using drug measurements at the pharmacological target site can be used to
 - Inform dose selection and pharmacodynamic endpoints in early phase pediatric clinical trials
 - Understand difference in outcome between diseases
 - Individualize pediatric cancer treatments to limit "non-responders"
 - Improve efficacy with drug delivery to tumors

How do we measure drug at the site of action?

Poor correlation be plasma drug levels and the site of action

Adapted from

10

Nakagawa *et al.* JNO 16:61-67, 1993
 Pujol *et al.* CCP 27:72-75, 1999

3. Haura et al. JTO 5:1806-1814, 2010

4. Stewart et al. JNO 2; 315-324, 1984

3. Variability in drug penetrance per tumor type

Drug penetration may differ between tumor types

Large uptake in NSCL *Study differences:

Sampling time differs slightly Measurment standardization differs: Ref 1: tumor wet weight, Ref 2: tumor dry weight

3. Variability in drug penetrance per tumor type

Teniposide penetration may differ between tumor types

3. Variability in drug penetrance per tumor type

Triple negative breast cancer xenograft study suggest that veliparib/carboplatin tumor penetration varies

Veliparib concentration measured by LC-MS, 2h after administration 20 mg/kg or 60mg/kg dose (at Steady State)

MALDI-MSI

Matrix-assisted laser desorption/ionization mass spectrometry imaging for measuring heterogeneity

MALDI-MSI shows heterogeneous veliparib penetration

The observed heterogeneity was larger in highest dose level

Veliparib low dose (20mg/kg) MDA231, ID1

HCC70, ID2

MDA436, ID3

Veliparib high dose (60mg/kg) MDA231, ID4

HCC70,ID5

MDA436,ID6

Bartelink IH et al. CCR 2016 (submitted)

TGERS

Drug disposition is dependent on a drug's properties

Lessons from tuberculosis studies

- Screen of 279 drugs: lipophilicity and poor solubility and number aromatic ring predict whether a drug can enter a necrotic region
- Highly relevant for cancers with low vascular, necrotic regions

TNBC xenograft study veliparib/carboplatin

Veliparib penetrates into necrotic tissues

Images 2h after administration 20 mg/kg or 60mg/kg dose (at steady state)

UCSF

Bartelink IH et al. CCR 2016 (submitted)

New Jersey Medical School

Xenograft study of Fluorescent olaparib Tumor vessel density may predict drug-uptake

Poorly vascularized regions: large gradient at early time point.

Olaparib accumulates inside nucleus of tum cells.

In vitro uptake

Using imaging to show heterogeneity spatial and temporal drug distribution

- Imaging methods can be used in spatial and temporal distribution in tumor lesions throughout the body
 - Contrast agent enhanced MRI: monitor tumor perfusion/permeability of tumor vasculature/tissue
 - Radiolabeled drug –PET scan drug specific penetrance and heterogeneity in uptake between lesions
 - Non-invasively monitor changes in drug penetrance over time

¹¹C docetaxel in 10 patients with NSLC Study bevacizumab reduces penetration docetaxel

¹¹C docetaxel predicts drug interaction and response in 34 advanced-stage lung cancer

¹¹C docetaxel Uptake in tumor > median significantly better response (RECIST) than < Ki value, P= 0.007).

Interaction in tumor uptake via OCT3 inhibition?

Reversed interaction could improve tracer uptake of ¹²³I mIBG* in neuroblastoma

Scan 3h after **high** dose hydrocortison

Scan 3h after **low** dose hydrocortison

Hydrocortisone in OCT3 expressing cells, the ¹²³I mIBG incorporation is reduced with minor effects on neuroblastoma cells

*mIBG= guanethidine analog that concentrates in sympathetic nervous tissue

A personalized approach of dosimetry improves outcomes of mIBG treatment

- Whole body dosing (WBD) correlated with lower toxicity
- WBD consistent between consecutive therapies
- WBD does not correlated with MIGB/kg dose

Further potential to personalize of mIBG treatment

- Tumor self-absorbed radiation dose (TSARD) may correlate with higher efficacy
- WBD /TSARD do no correlated with MIGB/kg dose
 - TSARD versus $MIGB/kg: R^2 = 0.32$
 - WBD versus TSARD: R²= 0.71, p= 0.0001

89Zr-Bevacizumab PET Visualizes Heterogeneous penetrance in lesions in 22 RCC patients

- High baseline tumor $SUV_{max} \rightarrow longer$ time to progression (HR=0.22 CI95% 0.05-1).
- SUV_{max} did not associate with plasma VEGFa

Platinum adduct formation in DNA of target cells may be more informative

Nature Reviews | Drug Discovery

26

Platinum adduct formation in DNA may accumate at PARPi cotreatment

Intracellular adduct formation influenced by drug transporters

Wang and Lippard, Nature Reviews 4, 307- 320, 2005

This is more complex when the platinum is combined with a PARPi

Uptake transporters	Efflux transporters
OCT 1-3	P-gp, BCRP, MRP2/4
OAT 1-3	MATE1-2
CRT1-2	ATP7A-B
	TMEM205

TNBC xenograft study veliparib/carboplatin Platinum adduct formation may depend on PARPi coadministration

Phase 1 study talazoparib/ carboplatin shows feasibility of measuring intracellular concentrations to predict toxicity

Toxicity	Ν	⁰ ⁄0
Neutropenia	12	50%
Anemia	10	42%
Thrombocytopenia	7	29%
Fatigue	3	13%

Toxicity profile of talazoparib 0.75-1mg /carboplatin AUC 1.5 weekly/2/3 weeks

32

Carboplatin adduct formation in PMBCs not affected by PARPi

Carboplatin adducts long $t_{1/2 \text{ and}}$ large variability

Carboplatin adduct formation did not differ between single and combination treatment

Carboplatin adduct formation may relate to toxicity

Carboplatin adduct formation higher in patients who are more prone to lymphocyte toxicity

Platinum adduct accumulation ex vivo may predict outcome

Immunofluorescence technique in circulating tumor cells

Ex vivo adduct accumulation in NSCLC patients may predict response (P=0.01; n=11)

Intracellular measurements of fludarabine in children pre-HCT by LC-MS

Fludarabine pre-HCT shows temporal differences in intracellular drug accumulation

Study of 133 children conditioned with a fludarabine-based regimen

intracellular f-ara-ATP \downarrow with time

f-ara-ATP	Dose 1	Dose 3	Dose 4	Dose 5
2hr post start infusion	9.6 (1-18.2)	3.3(0.41-12)	1.73(0.57-11.6)	0.64(0.22-1.4)
Number of samples	17	16	16	5

Long-Boyle 2016 in preparation

6. Implement target site-outcome association

Number labeled tracers used in clinical trials for multiple targets

- Ongoing trials in just breast cancer in 2016: **N=164***
- Any NIH-registered pediatric trial in 2016 N=4

Tracer type	disease	Patient inclusion
⁶⁸ Ga-DOTATOC	brain tumors	suspended participant recruitment
¹⁸ F-DOPA	CNS Tumors	currently recruiting participants
18F-FLT	Brain Tumors	recruitment on invitation
18F-FLT	Gliomas	withdrawn prior to recruitment

6. Implement target site-outcome association

Barriers for implementation in the clinic in adults and children

- Radiolabeled compounds
 - Investigational medicinal product dossier (IMPD)
 - Randomized clinical trial needed
 - Financial strains
 - Logistics
 - Complex data-analysis
 - Children: fear of radiation (CT-scan + radiolabeled drug)
 - Trial accrual

39

- Drug measurements in tumor biopsies
 - Biopsies scheduled at the right time after drug administration
 - Advanced equipment needed

6. Implement target site-outcome association

Advanced imaging techniques may be needed to understand drug penetration

Method	Binary classifier	Threshold value	Multispectral	Geographic
Example	K ^{trans}	ADC	K ^{trans} and ADC	K ^{trans} or ADC
lmage	-	۲	۲	۲
Distribution	f 0 Low High	Low High	PCI	Parameter values unrelated to voxel category
Кеу	 Nonenhancing Enhancing 	Below medianAbove median	Cluster 1 Cluster 2	Middle zone
Derived BM	Volume or fraction of each tumor subregion	Volume or fraction of each tumor subregion	Volume or fraction of each tumor subregion	Parameter value in each tumor subregion
Segmentation criteria	<i>A priori</i> notion of tumor physiology	Derived from previous data <i>or</i> arbitrary	Data driven	Voxel location
© 2014 American Association for Cancer Research				
oon neviews				

Conclusions

- Implementation of drug measurements at the pharmacological target site
 - May improve success rate of early phase pediatric clinical trials, especially basket trials
 - Can be used to understand non-response in clinical practice
 - Use micro doses of tracer drugs
 - Take tumor biopsies during drug dosing

Acknowlegdements

Comprehensive Cancer Center

Early Phase clinical trials unit

Pamela Munster

Jim Leng Mallika Dhawan Rahul Aggarwal Rayyan Sheick

Brendan Prideaux Veronique Dartois

MALDI-MSI

Pathology ^{8/5/2016} Gregor Krings Van 't Veer lab Denise Wolf Laura van 't Veer Lamorna Brown-Swigart

Clinical pharmacology/ Pharmacometrics Rada Savic Leslie Floren Deanna Kroetz

Munster lab

Scott Thomas, Nela Pawlowska Jena Park

NKI-AVL Niels de Vries Hilde Rosing

Pediatric pharmacology/pathology Janel Long-Boyle Jessica Davis