

Challenges in Global CCS Projects

and Coping Strategy

Research Institute of Petroleum Exploration and Development, PetroChina

Oct. 24-26, Valencia, Spain

2016/11/11

1. Why do we do CCS/CCUS **2. Global CCS projects 3. Challenge for CCS** 4. Coping strategy for CCS **5.** Conclusions

Because we have only one earth in the universe, we need to protect it to save human being
Since the industrial revolution, human activity is more and more dependent on fossil fuels, which emit a great of greenhouse gas

2016/11/11

World Conference on

Climate Change

Temperature increase with CO2 concentration

By the end of the century, we could expect the planet's average temperature to rise anywhere between about 1.5 and 2°C

2. Global CCS projects

Large-scale projects in the world								
Projects	Country	Capture	Size/Mtpa	Industry	Transport	Storage	Starting Time	
Sleipner	Norway	Pre-combustion	0.9	Gas processing	None Direct Injection	Deep saline	1996	
Weyburn	Canada	Precombustion	3.0	Natural gas synthetic	Pipeline 315 km	EOR	2000	
Salah	Algeria	Precombustion	0	Gas processing	Pipeline 14 km	Deep saline	2004	
Snøhvit	Norway	Precombustion	0.6-0.8	LNG production	Pipeline 152 km	offshoresaline	2008	
Century Plant	England	Pre-combustion	8.4	Gas processing	Pipeline 69 km	EOR	2010	
Coffeyville plant	USA	Industrial separation	1.0	Fertilizer production	Pipeline 112 km	EOR	2013	
Boundary Dam	Canada	Post- combustion	1	Power generation	Pipeline 100km	EOR	2014	
Kemper County	USA	Pre-combustion	3.5	Power generation	Pipeline	EOR	2014	
Quest	Canada	Pre-combustion	1.08	hydrogen processing	Pipeline 65km	Deep saline	2015	
Uthmaniyah	Saudi Arabia	Pre-combustion	0.8	Gas processing	Pipeline 700km	EOR	2015	
Gorgon	Australia	Pre-combustion	3.4-4.0	Natural gas processing	Pipeline 7km	onshore saline	2016	
Illinois Industrial	USA	Industrial separation	1.0	Ethanol production	Pipeline 1.6km	onshore sali	2016	

2016/11/11

World Conference on

Climate Change

2. Global CCS projects

CO₂ capture capacity by actual and expect year of operation

2. Global CCS projects

Global CO₂ storage potential

Туре	CO ₂ storage capacity/Gt			
Depleted Oil reservoirs	690			
Depleted Gas reservoirs	120			
saline aquifers	400-10000			
coal beds	40			
total	1160-10760			

IPCC special Report on Carbon dioxide Capture and Storage

3. Challenge for CCS

CCS is a systematical engineering, also, it has good prospects, CCS faces a large number of critical challenges in the future, including four technology challenges and four environment challenges, as shown in below figures

3. Challenge for CCS

2016/11/11

11/20

4. Coping strategy for CCS

Four ways for reducing CO₂ emission

CO₂ capture and geological sequestration (CCGS) Depleted Oil & Gas reservoirs, saline aquifers and coal beds for CO₂ Storage \bullet CO₂ Capture, utilization and Storage (CCUS) Oil & Gas reservoirs for EOR, EGR, ECBM, EWR

2016/11/11

13/20

World Conference on

4. Coping strategy for CCS

Energy saving and CO2 emission reduction and improved energy efficiency (ESCR)

2016/11/11

4. Coping strategy for CCS

5. Conclusions

- (1) Distinguish the CCGS, CCUS, CCU and SECR , in order to make full use of these technology
- (2) Develop the new CCS/CCUS technology to reduce the Cost of CCS/CCUS chain and improve the energy utilization efficient
- (3) Accelerate the CCGS and CCUS technology innovation, construct the CO2 hub, cluster and transportation network, and establish the long-term mechanism of monitoring and management to reduce the risk of CO2 storage
- (4) Introduce the mitigate CO2 knowledge, organizing public education of CCS chain, promoting exchange between governments, improve public awareness, build good finance channel for developing practical CCS technology
- (5) According the different country policy, perfect carbon regulations and laws, build international standards of carbon management, aiming to ensure the implement of the large-scale CCGS and CCUS projects

