Evaluation of *Pterocarpus santalinus* Linn. f. methanolic extract as a natural melanogenesis inhibitor – *in vitro* study in B16F0 melanoma cell lines

Hridya. H, Sankari. M and Dr. R. Siva, Plant Biotechnology division School of Bio Sciences and Technology VIT University, Vellore

3rd International Conference and Exhibition on Pharmacognosy, Phytochemistry Natural products, HICC, Hyderabad, India

October 28, 2015

Skin – The first line of defence

- ≻Melanin
- ≻Human skin color
- >Darkest brown- pinkish white hues
- ≻Females are evolved lighter than male-
 - ↑ Calcium –pregnancy and lactation (Muehlenbein, 2010)

1	10		19	28	
2	11		20	29	
3	12		21	30	
4	13		22	31	
5	14		23	32	
6	15		24	33	
7	16		25	34	
8	17		26	35	
9	18		27	36	

Melanocytes, melanosomes and melanin

- Melanocytes 1000-2000/sq mm and Melanosome 500nm
- ➤ Melanogenesis need and role
- ➢ Melanin melas "black, dark"

Melanin synthesis – tyrosinase (Tishkoff, 2009)

Hyperpigmentation – A Major disorder

- Skin pigmentation melanin in epidermis defence against solar radiation and absorbing free radicals.
- ↑ melanin age spots, freckles, chloasma, solar lentigo, melasma, melanoderma incurred by inflammation including eczema, dermatitis and distressing skin problems as well as aesthetic problems.
- causes hormonal changes, ageing, chronic inflammation, uv light exposure.
- Prevention reduce exposure to uv and skin lightening agents. (Uchida et al., 2014; Lin et al., 2007)

Pterocarpus santalinus L.

Common name: raktha chandanam, red sanders wood

Coloring component: santalin

Dye: red

Pharmacological uses:

➤The heartwood is rubbed with water, honey, ghee, and oil, applied as collyrium to alleviate defects of vision.

Treating skin diseases, bone fracture, leprosy, Order:Fabales
 spider poisoning, scorpion sting, hiccough,
 ulcers, improve complexion, general debility
 and metal aberrations.
 (Siva 2007, Arunakumara et al, 2007)

Taxonomic classification

Kingdom:Plantae (unranked):Angiosperms (unranked):Eudicots (unranked):Rosids 'Order:Fabales Family:Fabaceae Subfamily:Faboideae Tribe:Dalbergieae Genus:*Pterocarpus* Species: *santalinus L*.

Methodology

- Extraction of *Pterocarpus santalinus* methanolic extract
- Effect of *Pterocarpus santalinus* on cell free tyrosinase activity
- Cell viability, cellular tyrosinase, melanin content of *Pterocarpus santalinus* extract treated B16F0 melanoma cells
- Melanogenic gene expression RT PCR
- Acute dermal toxicity

3

4

5

Inhibitory effect of *Pterocarpus santalinus* extract on tyrosinase activity. Data are presented as mean \pm SD (n = 3). IC50 value of *Pterocarpus santalinus* 25.63 \pm 0.569 µg/ml

The cell viability of B16F0 after treatment with different concentration of *Pterocarpus santalinus extract* (5, 10, 25, 50, 100, 200 µg/ml) for 24 and 48 hours

Effect of *Pterocarpus santalinus* extract on cellular tyrosinase activity in B16F0 cells for 24 and 48 hours.

Effect of *Pterocarpus santalinus* extract on melanin synthesis in B16F0 cells at 24 and 48 hours.

RT-PCR

Melanogenic	Forward Primer	Reverse Primer			
Genes					
MITF	5'-AGTACAGGAGCTGGAGATG-3'	5'-GTGAGATCCAGAGTTGTC-3'			
TYROSINASE	5'-GGCCAGCTTTCAGGCAGAGGT-3'	5'-TGGTGCTTCATGGGCAAA-3'			
TRP1	5'-GGCCTCTGAGGTTCTTTAAT-3'	5'-AATGACAAATTGAGGGTGAG-3'			
TRP2	5'-ATGAGAAACTGCCAACCTTA-3'	5'-AGGAGTGAGGCCAAGTTATGA-3'			
GAPDH	5'-GTGAAGGTCGGTGTGAACG-3'	5'-CTCGCTCCTGGAAGATGGTG-3'			

PCR conditions

40 cycles at 94°C for 30s, 55° C for 30s and 72°C for 30s

Pterocarpus santalinus extract decreases MITF and tyrosinase gene expression in B16 melanoma cells. B16 melanoma cells were treated with the higher concentrations of *Pterocarpus santalinus* extract (50, 100 and 200 μ g/ml) for 48 h.

Acute Dermal Toxicity Test OECD guideline number 402

Animal: Wistar rats (*Rattus norvegicus*)
Weight: approximately 200 grams
Gender: Female (6 animal per group) (Monique et al, 2010)
Ethical clearance issue : VIT/IEAC/9/July 26/No.20

Groups	Dose (mg/kg body weight)
Group I (control)	Treatment with vehicle (70% ethanol)
Group II (PS extract)	500
Group III (PS extract)	1000
Group IV (PS extract)	2000

Acute Dermal toxicity test: (OECD guideline number 402)

Week 1 : Acclimitization to housing conditions

Week 2: Day 0 - 10% of hair will be shaved and caged individually (24 hours).
Day 1- extract applied with guaze patch and covered (24hours)
Day 2- rinsed (1,24,48 and 72hours) observed for skin irritation test
Week 3: till day 14- observations and body weight measurement.
Week 4: day 15- sacrifice.

Analysis :

 \triangleright Morphological analysis : observation of erythema and oedema and its scoring according to Draize scoring system.

≻Body weight measurement

Histopathological analysis of treated skin (Isbrucker 2006).

Group	Dose mg/kg body weight		Erythema				Oedema				
		1	24	48	72	14 th	1	24	48	72	14 th
		hour	hour	hour	hour	day	hour	hour	hour	hour	day
1	0 (Control)	0	0	0	0	0	0	0	0	0	0
2	PS 500mg	0	0	0	0	0	0	0	0	0	0
3	PS 1000mg	0	0	0	0	0	0	0	0	0	0
4	PS 2000mg	0	0	0	0	0	0	0	0	0	0

Skin reaction scored for control and treated groups at different time intervals according to draize skin irritation scoring, 0: no erythema or no oedema; 1: barely perceptible erythema or oedema; 2: well defined erythema or slight oedema; 3: moderate to severe erythema or moderate oedema; 4: severe erythema or oedema.

Group	Dose mg/kg	Day 0	Day 7	Day 14	
	Body weight				
1	0 (Control)	208.6±1.59	225.3±1.52	243.6±3.78	
2	PS 500mg	215.3±2.10	236.5±1.98	256.8±3.65	
3	PS1000mg	213.3±1.09	233.9±2.87	254.7±2.76	
4	PS 2000mg	225.0±1.31	244.3±1.65	272.0±2.24	

Body weight of rats treated with *Pterocarpus santalinus* extract on skin. Data are expressed as mean \pm S.D, No statistical difference between control and treated group (P>0.005).

16

vehicle

Representative Images of skin irritation test observed post treatment of *Pterocarpus santalinus* extract

Treated

Histopathological evaluation of skin tissues treated with *Pterocarpus santalinus* (Magnification 10X)

2000

An overview of the research work

Research Outcomes:

Significant Anti tyrosinase activity was exhibited by *Pterocarpus santalinus* extract dose dependently

➢ Decreased cellular tyrosinase activity and melanin content without cytotoxicity to the treated cells time and dose dependently

Down regulation of Melanogenic genes

> Pterocarpus santalinus – dermal application – safe

Reference

- 1. Human Evolutionary Biology. Muehlenbein, Michael, Cambridge University Press, 2010 pp. 192–213.
- 2. The genetic structure and history of Africans and African Americans, Tishkoff SA, Reed FA, Friedlaender FR Science 324 (5930) 1035–44.
- 3. Constituents from the Formosan apple reduce tyrosinase activity in human epidermal melanocytes, Lin.Y.P, Hsu F.L, Chen.C.S, Chern.J.W, Lee.M.H, Phytochemistry, 2007, 68(8), 1189–1199.
- 4. Inhibition of tyrosinase activity and melanine pigmentation by 2-hydroxytyrosol, Ryuji Uchida, Seiko Ishikawa, Hiroshi Tomoda, Acta Pharmaceutica Sinica B, 2014, 4(2), 141-145.
- 5. Tyrosinase and Tyrosinase Inhibitors, TM Chang, Journal of Biocatalysis & Biotransformation, 2012, 1:2.
- 6. Siva, R. Status of natural dyes and dye-yielding plants in India. Current Science 2007, 92(7), 916-925.
- 7. Pterocarpus santalinus Linn. f. (Rath handun): A Review of Its Botany, Uses, Phytochemistry and Pharmacology Kodithuwakku Kankanange Indika Upali Arunakumara, Buddhi Charana Walpola, Siripala Subasinghe1, and Min-Ho Yoon. J. Korean Soc. Appl. Biol. Chem. 54(4), 495-500 (2011)
- 8. Chan, Y.Y., Kim K.H., Cheah, S.H., 2011. Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J Ethnopharmacol. 137, 1183–1188.
- 9. Kim, D., Park, J., Kim, J., Han, C, Yoon, J., Kim, N., Seo, J, Lee, C., 2006. Flavonoids as Mushroom Tyrosinase Inhibitors: A Fluorescence Quenching Study. J. Agric. Food Chem. 54, 935-941.
- 10. Kumar, C.M, Sathisha, U.V., Dharmesh, S, Rao, A.G., Singh, S.A., 2011. Interaction of sesamol (3,4-methylenedioxyphenol) with tyrosinase and its effect on melanin synthesis. Biochimie, 93, 562-569.
- 11. Lam, K.W, Syahida, A., Ul-Haq, Z., Abdul Rahman, M.B., Lajis, N.H., 2010. Synthesis and biological activity of oxadiazole and triazolothiadiazole derivatives as tyrosinase inhibitors. Bioorg Med Chem Lett. 20, 3755–3759.

---Thank you---