Evaluation of lipid productivity of *Rhodosporidium toruloides* under non-sterile condition from a mixture of distillery and domestic wastewater

> Jiayin Ling, Yuan Tian, Pak Chuen Chan, Renata Alves de Toledo, and <u>Hojae Shim</u>

Department of Civil and Environmental Engineering Faculty of Science and Technology University of Macau

2nd World Congress and Expo on **Recycling**

July 25-27, 2016 Berlin, Germany

Fossil fuels vs. Renewable energy

> Shortage of fossil fuel:

- World liquid fuels: 87 million barrels/day (2010) to 119 million/day (2040)
- Unsustainable: reserves fast declining and greenhouse gas emission
- Anthropogenic emission of carbon: 20 billion tons/year

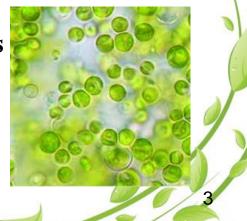
> Renewable energy:

- Solar, wind, hydro, biomass, or geothermal
- 19% of total global energy consumption in 2012
 20.45% in 2050, for the previous slobal investment to \$400, 500
 - **30-45% in 2050: fast growing global investment to \$400-500 billion/year**

Some Challenges in Biodiesel Industry

Ist Generation Biodiesel—vegetable oils crops

Crops for biodiesel production vs. Crops for food supply


> 2nd Generation Biodiesel—oils from non-edible plants

Not mature for industrial purposes

3rd Generation Biodiesel—oleaginous microorganisms

Production cost still too high

Food Industry Wastewater

> Annual wastewater generated from brewery in China:

210 million tons by 2012

- Cost investment for wastewater: \$20.9 billion (2019)
- > Food industry wastewater difficult to treat:

High COD

High TN and TP

Need for more cost-effective treatment process

Oleaginous Microbes

Why yeast?

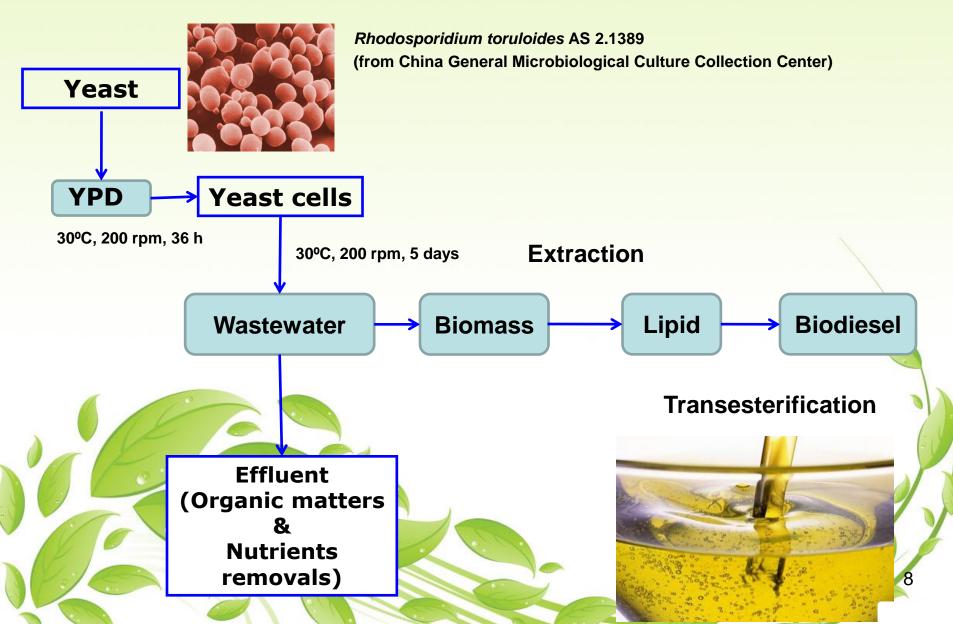
Long cultivation times for microalgae (6-30 days)
 Oleaginous yeast with remarkable lipid production
 Shorter incubation time (30-144 h)

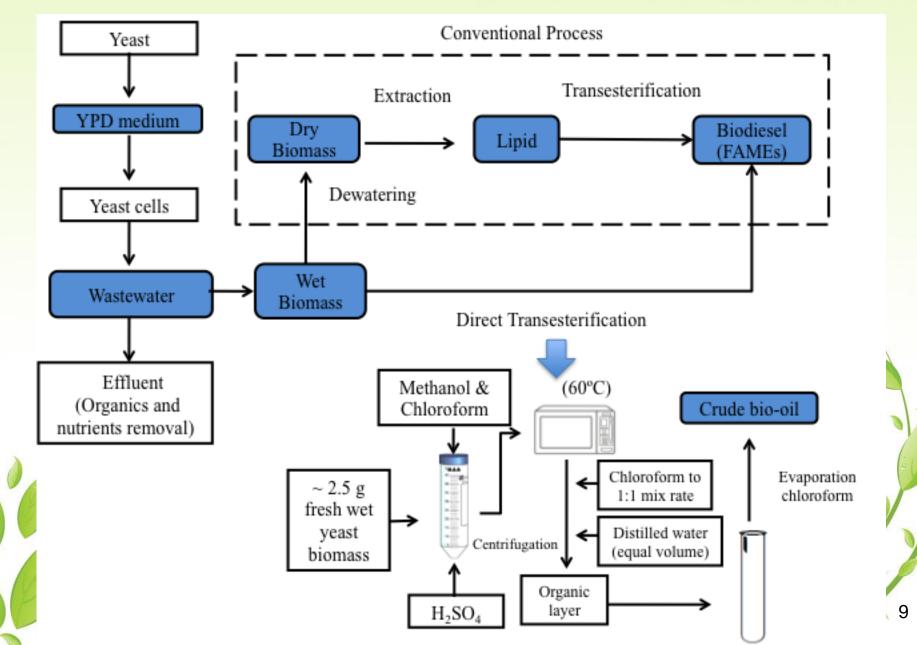
Objectives

- To treat food industry wastewater (mixture of distillery and domestic) effectively
- To produce microbial lipid/biodiesel from wastewater under non-sterile condition (effect of indigenous organisms)

Experimental

> Wastewater

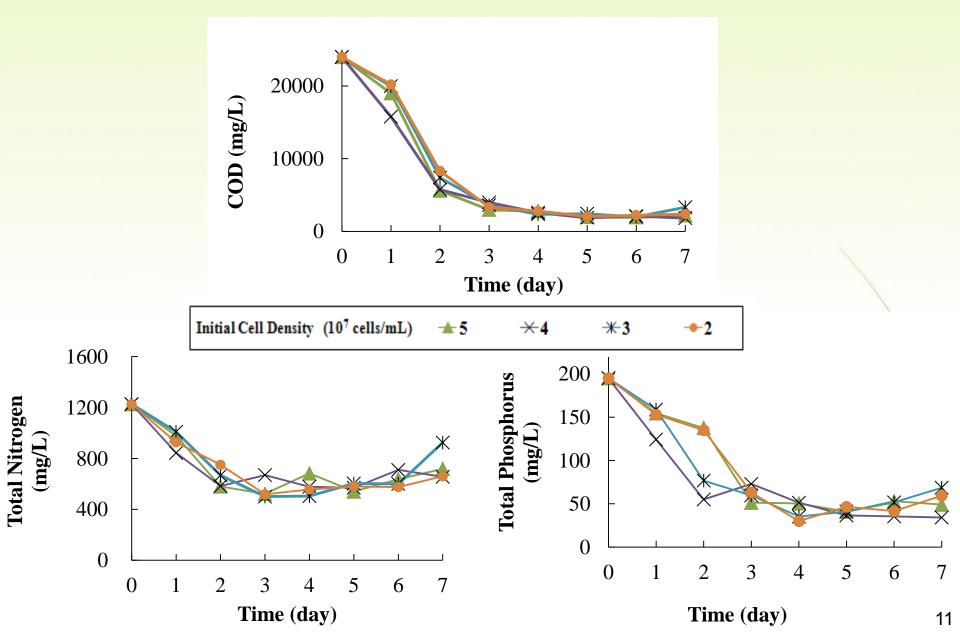

- Rice wine distillery wastewater (Foshan, China)
- Domestic wastewater (Macau SAR, China)


Characteristics of Wastewater

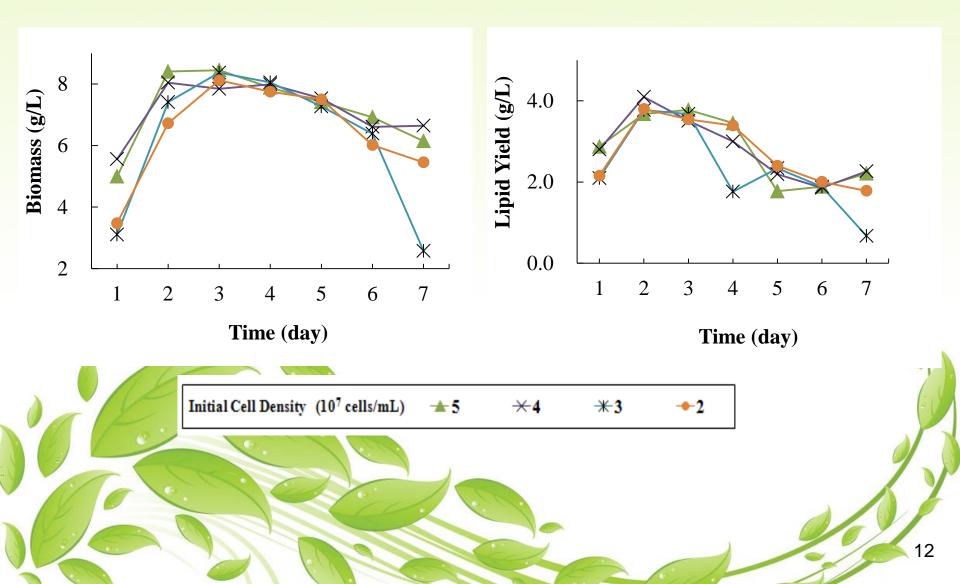
Wastewater	SCOD (mg/L)	TN (mg/L)	TP (mg/L)	NH ₃ -N (mg/L)	рН
Distillery Wastewater	59,900	2,680	380	204	3.7
Domestic Wastewater	49	11	2	8	7.6
Mixed Wastewater (1:1)	29,100	1,255	179	107	3.7

Experimental

Experimental flow

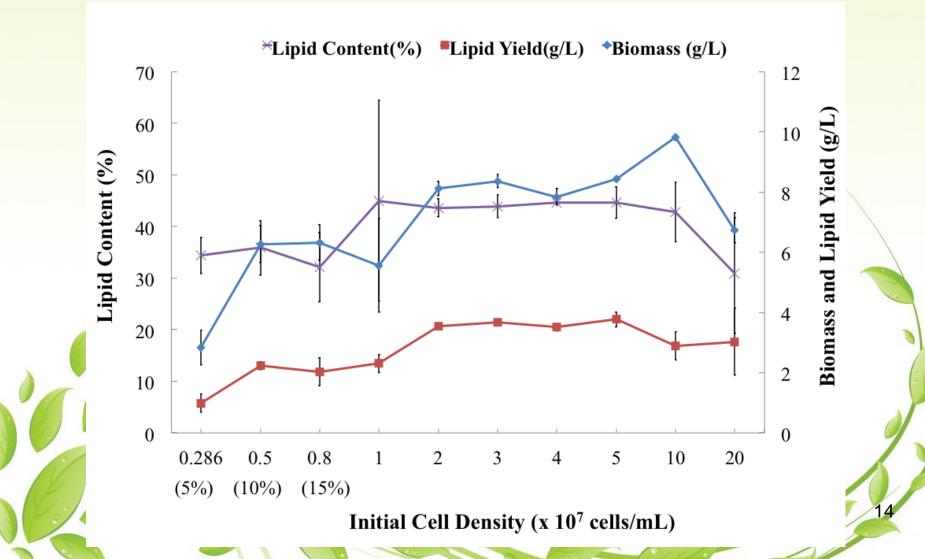


Experimental

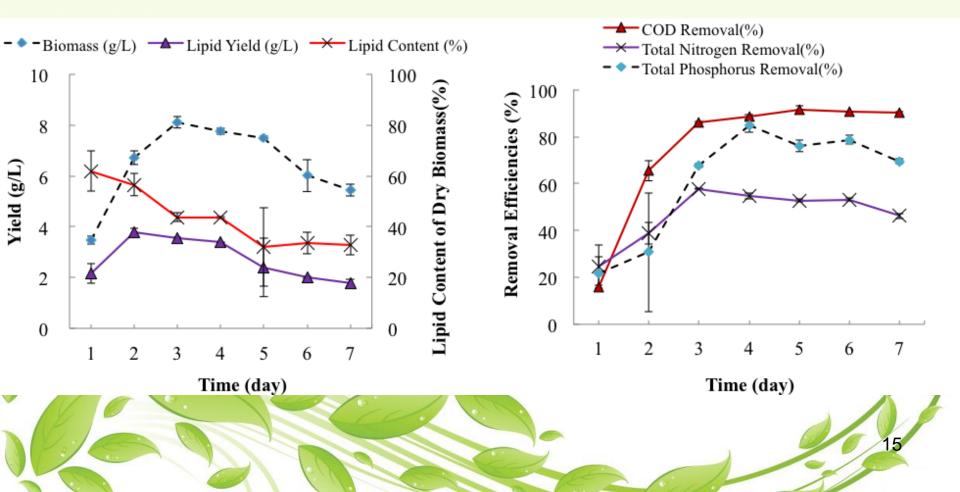

- Analytical Methods
- Dry weight of yeast biomass
- Lipid yield: acid-heat method
- COD, TN, TP: Hach method
- FAMEs :
 - **Dissolved** in 5 mL hexane

Gas chromatography with flame ionization detector

Effect of initial cell density (-organics/nutrients removal-)


Effect of initial cell density (-biomass and lipid yield-)

Contribution of indigenous organisms to specific removal of organics/nutrients and specific lipid production from mixed wastewater after 3 days of cultivation


Microorganism	Cell density (cell/mL) x 10 ⁸	Wastewater	SCOD:TN:TP	Specific COD removal*	Specific TN removal*	Specific TP removal*	Specific Biomass**	Specific lipid yield**	Specific lipid content***
R. Toruloides AS2.1389	0.20	Mixed distillery wastewater (Sterile)	249:7:1	25.61	0.34	0.08	7.10	2.89	0.42
R. Toruloides AS2.1389	0.20	Mixed distillery wastewater (Non-sterile)	249:7:1	22.34	0.30	0.06	6.04	2.33	0.30
Indigenous organisms	0.75	Mixed distillery wastewater (Non-sterile)	249:7:1	8.42	0.14	0.03	1.73	0.36	0.06
	** (g/L cell	ll ⁻¹ h ⁻¹) x 10 ⁻⁶ ⁻¹ h ⁻¹) x 10 ⁻⁹ id/g/L biomas	s cell ⁻¹ h ⁻¹) :	x 10 ⁻⁹					13

Effects of initial cell densities on lipid production in mixed wastewater under non-sterile conditions in 3-day cultivation

Lipid production and organics/nutrients removal at initial cell density of 2 x 10⁷ cells mL⁻¹

Direct transesterification

Factors	Solvent/	Methanol					
Test NO.	biomass rate (mL/g)	and chloroform mix ratio	H ₂ SO ₄ (%)	Reaction time (min)	FAMEs/Lipid conversion (%)	Mean FAMEs (mg/L WW)	
1	8	1:0	2	10	31.53	204	
2	8	1:1	4	20	37.33	241	
3	8	2:1	6	30	55.99	362	
4	16	1:0	4	30	37.19	240	
5	16	1:1	6	10	71.12	460	
6	16	2:1	2	20	42.39	274	
7	24	1:0	6	20	53.06	343	
8	24	1:1	2	30	53.36	345	
9	24	2:1	4	10	44.60	288	

Biodiesel from yeast

Biodiesel from rapeseed

Methyl Palmitate(%, C16:0)

Methyl Palmitoleate(16:1, %)

Methyl strearate (C18:0) (%)

Linoleic acid methyl ester (C18:3,%)

Methyl oleate (C18:1,%)

Other FAMEs (%)

Methyl Linoleate(C18:2,%)

Methyl Palmitate(%, C16:0)
Methyl Palmitoleate(16:1, %)
Methyl strearate (C18:0) (%)
Methyl oleate (C18:1,%)
Methyl Linoleate(C18:2,%)
Other FAMEs (%)

Comparison with other transesterification methods

Method	Temperature (℃)	Reaction time	Applied to wet biomass (Y/N)	Dewatering process required (Y/N)	Conversion (%)	Reference
Conventional	117	3 h	N	Y	≈90	Lotero et al., 2005
In Situ	70	20 h	N	Y	98	Liu and Zhao, 2007
Transesterification	120	2 h	Y	Ν	92	Cao et al., 2013
Microwave assisted Direct Transesterification	60	10 min	Y	N	70	This work

Conclusions

Generating renewable energy (biodiesel) while treating high strength wastewater without addition of external nutrient/fertilizer

> High removal of organic matters and nutrients (P)

Applicable to non-sterile wastewater without interference of indigenous microorganisms

> High lipid production at relatively short time

Microwave-assisted transesterification process as a promising technology with lower energy consumption

Acknowledgements

- Macau Science and Technology Development Fund (FDCT)
- University of Macau Multi-Year Research Grant
- Dr. LING, Jiayin; Ms. TIAN, Yuan; Mr. CHAN, Pak Chuen; Dr. de TOLEDO, Renata Alves

