A Comparison of Three Models in Multivariate Binary Longitudinal Data

Hissah Alzahrani

Longitudinal Data Analysis

Longitudinal data structure

ID	Y_{it}	time	X_{it1}	X_{it2}		X_{itC}
(1)	$\left(\begin{array}{c} y_{11} \end{array}\right)$	$\begin{pmatrix} 1 \end{pmatrix}$	$\int x_{111}$	x_{112}	•••	x_{11C}
1	y_{12}	2	x_{121}	x_{122}	•••	x_{12C}
:		:	:	÷	۰.	:
2	y_{21}	1	x_{211}	x_{212}	•••	x_{21C}
2	y_{22}	2	x_{221}	x_{222}	•••	x_{22C}
1 : 1			:	÷	·	÷
1 : 1			:	÷	۰.	÷
N	y_{N1}	1	x_{N11}	x_{N12}	•••	x_{N1C}
N	y_{N2}	2	x_{N21}	x_{N22}	•••	x_{N2C}
			÷	÷	۰.	÷
(N)	$\left(y_{NT} \right)$	T	$\langle x_{NT1} \rangle$	x_{NT2}		x_{NTC}

Multivariate longitudinal data structure

ID	Y_{it1}	Y_{it2}	•••	Y_{itK}	time	X_{it1}	X_{it2}		X_{itC}
(1)	$\int y_{111}$	y_{112}	•••	y_{11K}	$\begin{pmatrix} 1 \end{pmatrix}$	$\int x_{111}$	x_{112}		x_{11C}
1	y_{121}	y_{122}	•••	y_{12K}	2	x_{121}	x_{122}	•••	x_{12C}
:	:	÷	·	÷	:	÷	÷	·•.	÷
2	y_{211}	y_{212}	•••	y_{21K}	1	x_{211}	x_{212}	•••	x_{21C}
2	y_{221}	y_{222}	•••	y_{22K}	2	x_{221}	x_{222}	•••	x_{22C}
:	:	÷	۰.	÷	:	÷	÷	·	÷
÷ -	:	÷	۰.	÷		÷	÷	·	÷
N	y_{N11}	y_{N12}	•••	y_{N1K}	1	x_{N11}	x_{N12}	• • •	x_{N1C}
N	y_{N21}	y_{N22}	•••	y_{N2K}	2	x_{N21}	x_{N22}	•••	x_{N2C}
	:	÷	·	÷		÷	÷	·	÷
(N)	y_{NT1}	y_{NT2}	• • •	y_{NTK}	$\left(T \right)$	$\langle x_{NT1} \rangle$	x_{NT2}	• • •	x_{NTC}

Longitudinal Data Analysis

Mixed effect models

Marginal models

 \rightarrow

 \rightarrow

Transition models

Multivariate longitudinal data structure

The sources of the correlation within each subject:

- Within outcome over time
- Within time among outcomes
- Across outcomes and times

ID	Y_{it1}	Y_{it2}	•••	Y_{itK}	
(1)	$\int y_{111}$	y_{112}	• • •	y_{11K}	
1	y_{121}	y_{122}	•••	y_{12K}	
÷	÷	÷	·	÷	
2	y_{211}	y_{212}	•••	y_{21K}	
2	y_{221}	y_{222}	•••	y_{22K}	
÷	:	÷	·	÷	
÷	÷	÷	·	÷	
N	y_{N11}	y_{N12}	•••	y_{N1K}	
N	y_{N21}	y_{N22}	•••	y_{N2K}	
:	:	÷	·	÷	
(N)	y_{NT1}	y_{NT2}	•••	y_{NTK}	

Research Aims

- Reducing many outcomes into one summary outcome which requires a unique set of regression coefficients
 — (O'Brien and Fitzmaurice, 2004)
- Analyzing each outcome separately which requires a set of regression coefficients for each outcome → (Shelton et al., 2004)
- 3) Analyzing the outcomes jointly which requires a set of regression coefficients for each outcome and the joint between them \longrightarrow The proposed method

Research Aims

- 1) Reducing many outcomes into one summary outcome which requires a unique set of regression coefficients $\implies g(E(Y_{itk})) = X_{it} \beta$
- 2) Analyzing each outcome separately which requires a set of regression coefficients for each outcome $\implies g(E(Y_{itk})) = \sum_{k=1}^{K} X_{itk} \beta_k$
- 3) Analyzing each outcome jointly which requires a set of regression coefficients for each outcome and the joint between them → The proposed method

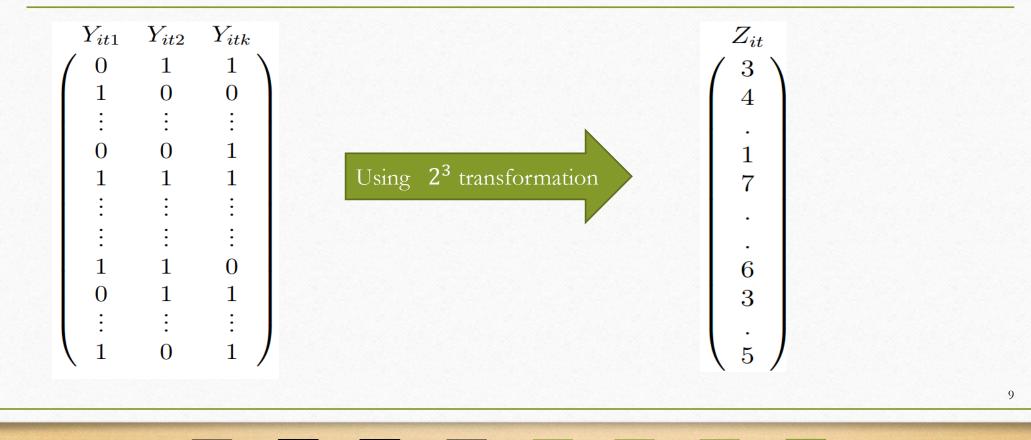
The Proposed Method

	L	et Y_1	~ Bernc	lli $(\pi_1), Y_2 \sim \text{Bernolli}(\pi_2), \dots, Y_K \sim \text{Bernolli}(\pi_K)$
Y_{it1} y_{111} y_{121} \vdots y_{211} y_{221} \vdots y_{N11} y_{N21} \vdots y_{NT1}	$egin{array}{c} Y_{it2} \ y_{112} \ y_{122} \ dots \ y_{212} \ y_{222} \ dots \ y_{N12} \ y_{N12} \ y_{N22} \ dots \ y_{N22} \ dots \ y_{NT2} \end{array}$	· · · · · · ·	Y_{itK} y_{11K} y_{12K} \vdots y_{21K} y_{22K} \vdots y_{N1K} y_{N2K} \vdots y_{NTK}	Encoding Z_{it} It is a transformation from binary coding system to decimal coding system 2^K Z_{i1} z_{12} z_{21} z_{22} z_{21} z_{22} z_{21} z_{22} z_{21} z_{22} z_{21} z_{22} z_{21} z_{21} z_{21} z_{21} z_{21} z_{21} z_{22}

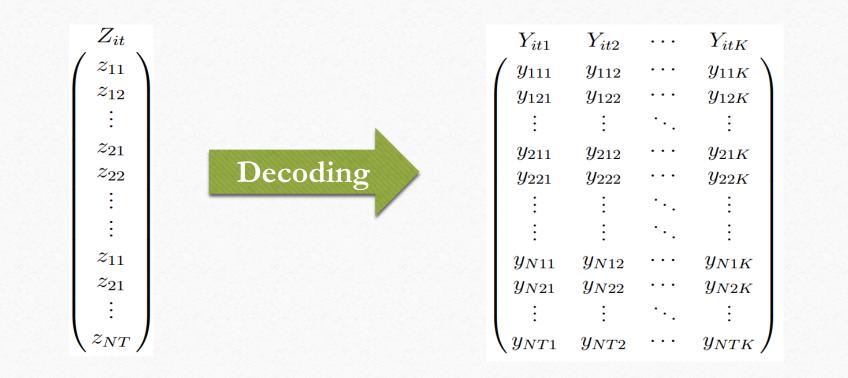
 $_{K})$

 \rightarrow

The Proposed Method



The Proposed Method



The Comparison

Encoding Step:

The new variable $Z_{it} = 2^0 \times Y_{i1} + 2^1 \times Y_{i2} = 2Y_{i2} + Y_{i1}$. The new variable $Z \in [0, 1, 2, 3]$

$$Z_{it} = \begin{cases} 0 & \text{when} & (Y_{i1} = 0) \& (Y_{i2} = 0) \\ 1 & \text{when} & (Y_{i1} = 0) \& (Y_{i2} = 1) \\ 2 & \text{when} & (Y_{i1} = 1) \& (Y_{i2} = 0) \\ 3 & \text{when} & (Y_{i1} = 1) \& (Y_{i2} = 1) \end{cases}$$

 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

- The Florida Dental Care Study (FDCS)
- The sample size is 873 subjects
- There are three binary outcomes that were measured over four time intervals (0-6, 6-12, 12-18, 18-24 months)
- Y_1 = Problem oriented visit, Y_2 = Check up, Y_3 = Dental cleaning

Covariate	Definition			
IRA	(1) The subject goes to a dentist regularly or occasionally whether or not has a problem, (0) The subject did go to a dental check-up once a year or more often in the previous 5 years.			
Gender	(1) Female, (0) Male.			
<u>Cavit</u>	(1) The subject reported having cavities (tooth decay) in the previous 6 months, (0) if not.			
Loose	(l) The subject had a loose tooth, (0)had not			
Able	(1) The subject able to pay unexpected US\$ 500 dental bill, but with difficulty, (0) not able to pay			

Model 1: $log(E(Y_{itk})) = \beta_0 + \beta_1 X_{IRA} + \beta_2 X_{gender} + \beta_3 X_{cavit} + \beta_4 X_{loose} + \beta_5 X_{able}$ Model 2: $log(E(Y_{itk})) = \sum_{k=1}^{K} \beta_{k0} + \beta_{k1} X_{IRA} + \beta_{k2} X_{gender} + \beta_{k3} X_{cavit} + \beta_{k4} X_{loose} + \beta_{k5} X_{able}$ Model 3: $logit(E(Z_{it})) = \sum_{j=1}^{J} \beta_{j0} + \beta_{j1} X_{IRA} + \beta_{j2} X_{gender} + \beta_{j3} X_{cavit} + \beta_{j4} X_{loose} + \beta_{j5} X_{able}$

$$\begin{cases} 1 & \text{when} & (Y_{i1} = 0) \& (Y_{i2} = 0) \& (Y_{i3} = 1) \\ 2 & \text{when} & (Y_{i1} = 0) \& (Y_{i2} = 1) \& (Y_{i3} = 0) \\ 3 & \text{when} & (Y_{i1} = 0) \& (Y_{i2} = 1) \& (Y_{i3} = 1) \\ 4 & \text{when} & (Y_{i1} = 1) \& (Y_{i2} = 0) \& (Y_{i3} = 0) \\ 5 & \text{when} & (Y_{i1} = 1) \& (Y_{i2} = 0) \& (Y_{i3} = 1) \\ 6 & \text{when} & (Y_{i1} = 1) \& (Y_{i2} = 1) \& (Y_{i3} = 0) \\ 7 & \text{when} & (Y_{i1} = 1) \& (Y_{i2} = 1) \& (Y_{i3} = 1) \end{cases}$$

14

\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

Application Model 3 Model 3 IRA_y1,2&3 IRA_y2&3 IRA_y1&3 IRA_y1&3 IRA_y1&2 IRA_y1&2 IRA_y2 IRA_y2 IRA_y1 Gender_y1,2&3 Gender_y2&3 Gender_y1&3 Gender_y1&2 Gender_y3 Ð • 0.1<p<1 Gender_y2 Gender_y1 0.05<p<0.1 Model 2 0.001<p<0.05 Model 2 IRA_y3 IRA_y2 IRA_y1 Gender_y3 Gender_y2 Gender_y1 × O Model 1 Model 1 GENDER ira • -2 0 2 -2 -1 0 1 2 -1 1 Parameters estimation of covariate IRA Parameters estimation of covariate Gender

 \rightarrow

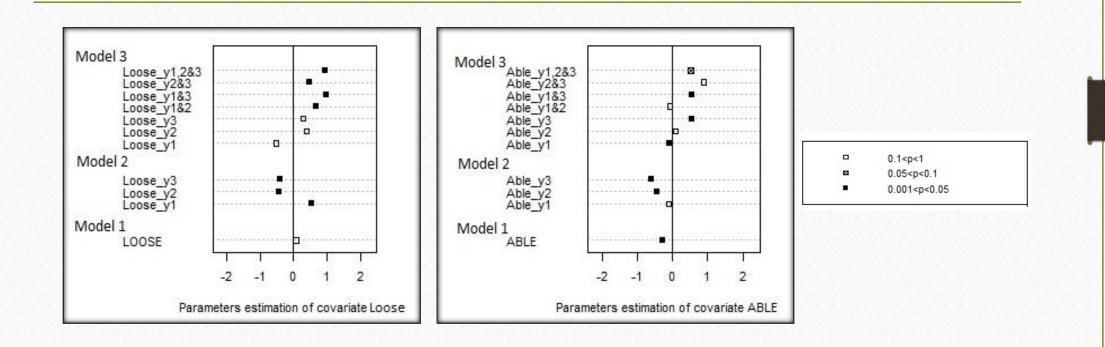
 \rightarrow

 \rightarrow

 \rightarrow

 \rightarrow

-



 \rightarrow

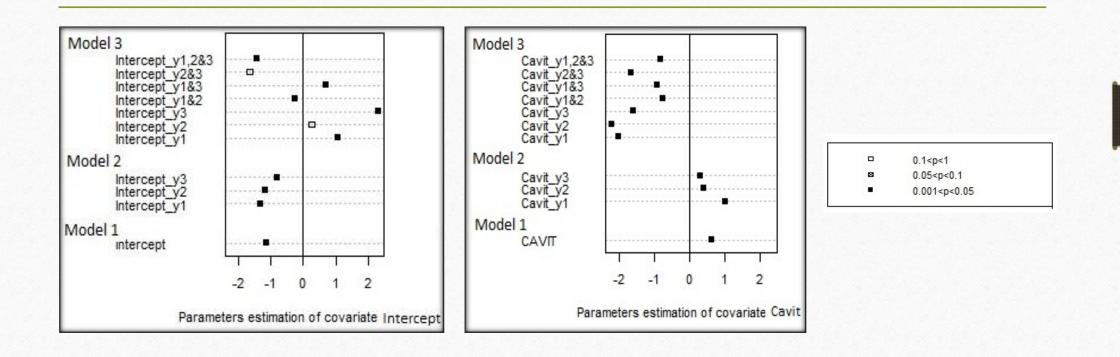
 \rightarrow

 \rightarrow

 \rightarrow

 \rightarrow

 \rightarrow



 \rightarrow

 \rightarrow

 \rightarrow

 \rightarrow

- The effect of each covariates on the responses varies over the three models.
- The most significant covariates over the three models are Cavity, Loose tooth, and the ability to pay an unexpected US\$500 dental bill, but with difficulty.

Conclusion

Model 1: The estimated covariates effects are one for all outcomes.
less parameters while accounting for the multivariate structure.
Model 2: The covariates effects are estimated for each outcomes.
analyze the effects of the covariates on the outcomes separately
Model 3: Estimating the effects of the covariates for each joint case of all the outcomes.

deeper analysis for the joint distribution of the multivariate longitudinal data.

Conclusion

Method 3 Cons:

- Limited to a small number of outcomes
- Estimation a lot of parameters especially when there are a lot of covariates.

$\blacksquare \rightarrow \blacksquare \rightarrow \blacksquare \rightarrow \blacksquare \rightarrow \blacksquare \rightarrow \blacksquare \rightarrow \blacksquare \rightarrow \blacksquare$

Thank you