

Evaluation of Cracking Resistance and Durability of 100% Reclaimed Asphalt Pavement Mixtures

Hesham Ali, PhD, PE. Mojtaba M. Afzali

2.7 Million Miles

Reclaimed Asphalt Pavement (RAP)

The average RAP content is under 25% Why?

Lack of Confidence Need for More Effective Design and Performance Verification Procedures High RAP Content Mixtures

Research Objectives

Methodology

Binder Tests

Mixtures Tests

Recycled Binder Durability

Introduction

Research Objectives

Methodology

Binder Tests

Mixtures Tests

How to verify effectiveness of rejuvenation?

Current practice:

Viscosity or penetration or performance grade requirements FDOT: Pen. : 40 – 80 dmm ; Viscosity @ 160 ° C : 5000 – 15000 Poises

Research Objectives:

Evaluate Cracking Resistance and Durability of 100% RAP mixtures

- Compare the cracking resistance of several samples of recycled binder and mixture to that of non-recycled samples
- Solution Monitor Changes in the cracking resistance over the life of the pavement
- Investigate the effect of rejuvenators on crackling resistance and durability

Methodology:

	Cracking Resistance	Aging
Binder	Bending Bean Rheometer (BBR)	Pressure Aging Vessel (PAV)
Mixture	Texas Overlay Test	Accelerated Pavement Weathering System (APWS)

Methodology

Superpave Performance Grade (PG) System

Florida: PG 67-22

Virtual Superpave Laboratory

Performance Graded Asphalt Binder Specification (from AASHTO MP 1)

Declarmance Grade		PG 46 PG 52				PG 58					PG 64				PG 70					PG 76				PG 82													
Pomonnance Graus	34	40	46	10	16	22	28	34	40	46	16	22	28	34	40	10	16	22	28	34	40	10	16	22	28	34	40	10	16	22	28	34	10	16	22	28	34
Average 7-day Maximum Pavement Design		< 46					< 52						< 58					< f	54					< 7	70					< 76					< 82		
Temperature, *C ^a		- 13										\frown													~												
Minimum Pavement Design Temperature,	-34	-40	-46	-10	-16	-22	-28	-34	-40	-46	-16	-22	-28	-34	-40	-10	-16	-22	-28	-34	-40	-10	-16	-22	-28	-34	-40	-10	-16	-22	-28	-34	-10	-16	-22	-28	-34
·C-	l			_	_			_		_			05	ICIA			ED	_	-	-	_	_		_	_	_	_								_	-	
UKIGINAL DINUEK																																					
Flash Point Temp, T 48, Minimum ("C)																			230																		_
Viscosity, ASTM D 4402:5																	$\langle \rangle$		135																		
Maximum, 3 Pa*s, Test Temp, °C																																					
Dynamic Shear, TP 5:5							_						_					Υ.	\sum					_	_					_							
G*/sin5 ⁴ , Minimum, 1.00 kPa		46					52						58				(6	4					7	0					76					82		
Test Temp @ 10 rad/s, °C																																					
ROLLING THIN FILM OVEN RESIDUE (T 240)																																					
Mass Loss, Maximum, percent																			1.00																		
Dynamic Shear, TP 5:																																					
G*/sin8", Minimum, 2.20 kPa		46					52						58					6	4					7	0					76					82		
Test Temp @ 10 rad/s, °C																																					
	· · · · ·									PR	ESS	URE	AG	NG 1	VES	SEL	RES	IDUE	E (PP	1)																	
PAV Aging Temperature, *C*		90					90				100				100					100 (110)					100 (110)				100 (110)								
Dynamic Shear, TP 5:																																					
G"sin§ ^f , Maximum, 5000 kPa	10	7	4	25	22	19	16	13	10	7	25	22	19	16	13	31	28	25	22	19	16	34	31	28	25	22	19	37	34	31	28	25	40	37	34	31	28
Test Temp @ 10 rad/s, °C																																					
Physical Herdening*	Report																																				
Creep Stiffness, TP 1																																					
Determine the critical cracking temperature	-24	-30	-36	0	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	0	-6	-12	-18	-24
as described in PP 42																																					
Direct Tension, TP 3																				_																	
Determine the critical cracking temperature	-24	-30	-36	0	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	0	-6	-12	-18	-24
as described in PP 42																																					

Introduction

Methodology

Bending Beam Rheometer (BBR)

Introduction

Research Objectives

Methodology

Binder Tests

s >

Mixtures Tests

Bending Beam Rheometer (BBR) Parameters

Creep Stiffness (S)

• The stiffness at 60 second

- Indicate the amount of thermal stresses
- PG requirement: $S \le 300$ Mpa

stress relaxation parameter (m-value)

- The slope of master stiffness curve at 60 s
- Indicates the ability to relax stresses
- PG requirement: m-value ≥ 3.00

Introduction

Methodology

Pressure Aging Vessel (PAV)

- Simulates long-term aging of the binder using heat and pressure
- ***** Temperature: 90, **100**, or 110 °C
- Pressure: 2.1 Mpa
- ***** Time : 20 hours
- **Simulate 7-10 years in service aging**

Introduction

Methodology

Binder Tests

> Mix

Mixtures Tests

Texas Overlay Test

- Evaluates the susceptibility of asphalt mixtures to fatigue and reflective cracking
- Applies repeated tension loads to the specimen to simulate repeated opening and closing of pavement joints and cracks due to temperature variations and traffic loading
- Designed by Texas Department of Transportation

Methodology

Binder Tests

Mixtures Tests

Asphalt Pavement Weathering System (APWS)

- Accelerated pavement weathering
- Simulates natural pavement weathering (top to down) with parameters such as moisture (rain), UV (sunshine) and temperature
- Incorporates full-depth samples

Research Objectives

Methodology

Binder Tests

> Mix

Mixtures Tests

Binder Tests

✤ Aging (PAV):

Standard: 20 hours (Plus RTFO) Extended: 60 hours

Virgin Binder: Two samples PG 67-22

True High Temperature Grade: Binder 1: 68.36 °C; Binder 1: 71.63°C

***** Rejuvenators:

HPE: Heavy Paraffinic Distilled Solvent Extract

CWE: Water-based Emulsion From Wax Free Naphthenic Crude With Residue Content Of 60%

Binder Tests Softening Curves

Research Objectives

Methodolog

Binder Tests

Mixtures Tests

Aging	Binder	Rejuvenator	Temp. (⁰ C)	Creep Stiffness (MPa)	m-value	Stiffness Critical Temp. (°C)	m-value Critical Temp. (°C)	High Temp. True Grade (°C)		
		Original	-12	190	0.309	25.4	22.7	077		
>		Ofiginal	-18	430	0.228	-23.4	-22.1	01.1		
A	Dindarl	LIDE	-12	72.8	0.353	21.5	25.0	92 /		
ng I S	Dilidel I	ΠΓĽ	-18	178	0.27	-31.3	-23.9	03.4		
igAgiun		CWE	-12	81.1	0.346	31.4	26.8	81.0		
d ∕ bhc		CWE	-18	187	0.288	-31.4	-20.8	01.7		
lar 20		Original	-12	159	0.313	27.5	24.2	01 /		
anc +		Oliginal	-18	319	0.277	-27.3	-24.2	71.4		
St: TO	Rinder?	HDE	-12	62.3	0.342	30.0	24.2	88.2		
RTI	Dilider2		-18	180	0.229	-30.9	-24.2	00.2		
		CWE	-12	80.3	0.332	33.5	27.8	867		
		CWE	-18	160	0.299	-33.3	-27.0	00.7		
			-6	143	0.299					
		Original	ginal <u>-12 263 0.258</u> -23.3		-23.3	-15.8	96.6			
			-18	475	0.202					
			-6	46.1	0.319	_				
	Binder1	HPE	-12	89.8	0.29	-33.5	-19.9	93.4		
50			-18	169	0.258					
ing V			-6 55.3 0.311							
Ag PA		CWE	-12	112	0.289	-31.3	-19.0	93.0		
sd 2			-18	212	0.241					
non			-6	105	0.31					
0 h		Original	-12	191	0.279	-26.0	-17.9	101.4		
6			-18	374	0.223					
			-6 36.5			1				
	Binder2	HPE	-12	79.8	0.309	-29.4	-22.6	94.6		
			-18	233	0.205					
			-6	58.4	0.309	1				
		CWE	-12	112	0.282	-32.4	-18.0	96.3		
			-18	198	0.265					

Introduction

Research Objectives

Standard Aging

Extended Aging

Discussions:

- Recycled samples had significantly lower creep stiffness than virgin binders.
 Also the m-value was generally higher for recycled samples.
- Sy increasing the aging from the standard to the extended aging, the stiffness of all samples increased and their m-value dropped.
- ★ Even after 60 hours of PAV aging, the stiffness of recycled binders was lower than the stiffness limit for PG67-22 (S≤ 300 MPa at -12°C). However, in most cases the m-values were too low and did not meet the requirement (m ≥ 0.300 at -12°C)
- Soth Rejuvenators enhanced the cracking resistance as characterized by a lower creep stiffness and higher m-value.

Methodolog

Mixture Tests

- ***** Texas Overlay Test for:
 - Recycled and new mixture
 - Before and after APWS aging
- Two recycled mixtures and two Control (new) mixtures
- APWS aging for 3000 and 6000 hours
- A 3,000-hour APWS exposure simulates the aging that occurs in the field in 7 to 10 years

Methodology

Sample Preparation

Recycled Mixtures

- Two recycled samples (CWE and HPE)
- RAP obtained from a hot in-place recycling project in Florida, USA
- Rap binder recovered to characterize and establish softening curves
- The same rejuvenators used for binder test used for rejuvenating the RAP
- 1.2 1 v = -0.2079x + 15.293 $R^2 = 0.9977$ v = -0.0517x + 4.0478CWE $R^2 = 0.993$ HPE 0.2 0 55 60 65 70 75 Pass/Fail Temperature, °C

3% screening sand

Sample Preparation

Control Mixtures

- **Control I:**
 - Aggregate extracted from the RAP using ignition oven
 - Mixed with PG 67-22 virgin binder with a binder content similar to the RAP (6.3%)
- Control II: Mixtures commonly used in Florida

> All pills prepared using Gyratory Compactor with 50 gyrations

Results

Mixture	Replicate	Starting Load, kN	Final Load, kN	Decline in Load, %	Cycles to Failure	Average Number of Cycles to Failure (ANCF)				
	-	•	0 Hours							
	1	2.185	0.153	93	55					
Control I	2	1.724	0.117	93.2	72	71				
	3	2.325	0.159	93.2	86					
	1 (SP)	4.230	0.282	93.3	104					
Control II	2 (SP)	0.155	0.008	94.7	62	63				
	3 (FC)	2.582	0.175	93.2	24					
	1	1.653	0.112	93.2	384					
HPE	2	1.759	0.12	93.2	145	239				
	3	1.797	0.119	93.4	189					
CWE	1	1.576	1.109	93.1	347					
	2	1.742	0.118	93.2	144	267				
	3	1.707	0.118	93.1	310					
			1000 Hours							
Control I	1	2.435	0.167	93.1	36	59				
Control 1	2	2.438	0.168	93.1	79	30				
	1	2.213	0.151	93.2	186					
HPE	2	2.135	0.147	93.1	98	186				
	3	2.386	0.167	93	275					
	1	2.53	0.174	93.1	153					
CWE	2	2.721	0.19	93	256	253				
Ē	3	2.526	0.174	93.1	349					
	-		3000 Hours							
HDE	1	2.987	0.23	93.2	75	71				
	2	2.55	0.17	93.4	66	/1				
CWE	1	2.927	0.199	93.2	58	08				
UWE	2	2.663	0.18	93.3	137	70				

Introduction

Research Objectives

Methodology

Mixtures Tests

Results

Discussions

- The Average Number of Cycles to Failure (ANCF) was considered an indication of susceptibility of mixtures to fatigue and reflective cracking
- Soth recycled samples performed much better than both control samples at the initial stage (before aging). Their ANCF was significantly higher, meaning that they had much better cracking resistance
- The ANCF decreases with increased APWS aging time.
- The rate of decrease in the ANCF with APWS time was considerably faster for recycled mixtures than for the control I.
- However, even at the end of 3,000 hours, recycled samples had an equally good or better resistance to cracking when compared with un-aged control samples.

Introduction

Methodology

Binder Tests

Discussions - Continued

- The recycled samples which were rejuvenated by CWE were found to have a better performance than those rejuvenated by HPE
- ***** Limitations:

Introduction

- > The variability of Texas Overlay Test results
- > The variability of the air voids between the control and recycled samples

Methodology

Binder Tests

Mixtures Tests

Conclusions

> The relatively small size of this experiment.

Research Objectives

- Senerally, recycled binders had significantly better cracking resistance than virgin binders. This fact was observed in both binder and mixture testing. This observation confirms that a properly recycled pavement can be even more resistant to cracking than a new pavement
- * In the binder testing, no consistent trend was observed in comparing the rate of decrease in cracking resistance of rejuvenated and virgin binders due to aging.
- The cracking resistance of recycled samples dropped faster. But because of the significant difference in the initial values, even after aging recycled samples had a better cracking resistance
- ***** The cracking resistance of recycled mixtures was affected by the type of rejuvenator.

Thank You