A ten-year evolution of a multidrugresistant tuberculosis (MDR-TB) outbreak in an HIV-negative context, Tunisia (2001-2011)

Naira Dekhil¹, Besma Mhenni¹, Raja Haltiti², and Helmi Mardassi¹ (speaker)

> ¹Unit of Typing & Genetics of Mycobacteria, Institut Pasteur de Tunis, Tunisia

²Hôpital Régional de Menzel Bourguiba, Tunisia

MDR-TB outbreaks have been mainly described in HIV-positive institutionalized individuals

An MDR-TB outbreak emerged in Tunisia and expanded in an HIV-negative context

The Tunisian MDR-TB outbreak major characteristics

* The outbreak expanded in the general community (non institutionalized)

Affected young (mean age ~27 yrs), immuno-competent and HIVnegative individuals

* The involved strains grow profisciently « in vitro »

(Mardassi et al., EID 2005)

The Tunisian MDR-TB outbreak involved a Haarlem3 genotype clone harboring a rare *rpoB* secondary site mutation, V615M

Development of a PCR-based test for the differentiation of the 12- and 11-banded profiles

Identification of the closest drug-sensitive pre-outbreak strain

												-			
		АТВ	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	P13
	ProfilA	RRRRR													
	ProfilB	RRRRR													
	ProfilC	RRRSS													
$ \rightarrow $	POS1	SSSSS													
	POS2	SSSSS													
	POS3	SSSSS													
	POS4	SSSSS													
	POS5	SSSSS													
	POS6	SSSSS													
	POS7	SSSSS													
	POS8	SSSSS													
	POS9	SRSSS													
	POS10	SSSSS													
	POS11	SSSSS													
	POS12	SSSSS													
	POS13	SSSSS													
	POS14	SSSSS													
	POS15	SSSSS													
	POS16	SSSSS													
	POS17	SSSSS													
	POS18	SSSSS													
	POS19	SRRSS													
	POS20	SSSSS													
	POS21	ND													
	POS22	SSSSS													
	POS23	SSSSS													
	POS24	SSSSS													
	POS25	SSSSS													
	POS26	SSSSS													
	POS27	SSSSS													
	POS28	SRSSS													
	POS29	SSSSS													
	POS30	SSSSS													
	POS31	SSSSS													
	POS32	SSSSR													
	POS33	SRSSS													
	POS34	SRSSS													
	POS35	55555													
	POS36	55555													_
	POS37	RRSSS													
	POS38	SSSSS													
	POS39	RRSSS													
	POS40	SSSSS													
	POS41	SSSSS													
	POS42	SSSSS													
	POS43	SSSSS													
	POS44	SSSSS													_
	POS45	SSSSS													
	POS46	SSSSS													
	POS47	SSSSS													
	POS48	SSSSS													
	POS49	SSSSS													
	POS50	ND													
	POS51	ND													
	POS52	ND													
	POS53	ND													
	POS54	ND													

Namouchi et al., JID 2010

 \checkmark Appreciate over a 10-year period (2001-2011) the clinical characteristics of the MDR-TB outbreak and the treatment outcome

✓ Carry out a comparative genomics analysis to better understand the molecualr basis undelying the epidemic phenotype

 \checkmark Carry out an in-depth, 10-year spanning, genotypic analysis of the strains circulating in the epidemic region

The MDR-TB outbreak was more frequently associated with the 11-banded IS6110 RFLP profile

¹¹⁻banded

¹²⁻banded

Aside from smear positivity, the 11- and 12banded outbreak strains behave similarly

Characteristics	All outcomes N=45 (%)	11-banded IS <i>6110</i> RFLP N=35	12-banded IS <i>6110</i> RFLP N=10	Matched OR (95% CI)	P value (Pearson's Chi- square test)
Age (years,means)	29,72	29,46	30,63		0,774
<20 (4 (8,89%)	3	1	1,19 (0,107-13,3)	0,887
20-40	27 (60%)	21	6	1 (0,163-6,138)	1
>40	5 (11,11%)	4	1	0,857 (0,082-8,965)	0,898
Male	40 (88,89)	31	9	0,861 (0,085-8,706)	0,899
Smear-positive	15 (33,33%)	9 (25,71%)	6 (60%)	4,333 (0,992-18,938)	0,043*
epidemiological link	10 (22,22%)	8	2	0,633 (0,107-3,733)	0,612
Duration of treatment (months,means)	30,4 (67,56%)	29,83	32,4		0,81
Outcome category:					
Cure	17 (37,78%)	14	3	0,6 (0,120-3,007)	0,532
Failure	6 (13,33%)	5	1	0,657 (0,065-6,605)	0,72
Relapse	4 (8,89%)	4	0	0,750 (0,614-0,916)	0,257
Death	9 (20%)	5	4	4,6 (0,849-24,929)	0,064

Treatment outcome: The outbreak proved difficult to treat

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
P1	•	•		•	•	•	•	••		•	
P2		•				•					
P3		•					•				
P4		•	•	•							
P5		••	•								
P6		•	••		•						
P7	•		•	•							
P8					•••	•	••	•	••	••	
P9					••	••					
P10			•		•	•		•	••	•	•••
P11				•	•••	•••	•••	•••			
P12					•	•	•••	••	•	••	
P13						•••	•••	•••			
P14					•	•••	••	••••	••	••••	•
										•	
P15		••			•	•	•	•			
P16					•				•		

• 12-banded

• 11-banded

Death was significantly associated with relapse and chronic cases

	Age, mean	Smear positivity	Relapse
Death (N=9)	<i>P</i> = 0,082	<i>P</i> = 0,197	<i>P</i> = 0,002
		Matched OR (95% Cl) 4 (0,431-3,7)	Matched OR (95% CI) 0,052 (0,00562-0,492)
%		11,11%	88,88%

Mutational analysis of drug resistance genes

Evolution of the MDR-TB outbreak based on mutations in drug resistance genes

Genome sequencing using the Illumina platform

11-banded MDR H3 outbreak strain 2078

12-banded MDR H3 outbreak strain 1183

Susceptible genetically related H3 strain 233

Comparative genomics: Statistics

SNP: Single Nucleotide Polymorphism

Whole genome LSPs-based Venn diagram

LSP: Large Sequence Polymorphism (≥ 10 bp)

Few Indel events differentiate other outbreak strains described worldwide

Haarlem3 (Hamburg) N= 89	Outbreak (San Francisco) N=09	Beijing (Uzbekistan) N=02
5 SNPs + 5 short deletions	7 SNPs+ 0 indels	130 SNPs+ 1 large deletion
(Andreas Roetzer,2013)	Midori Kato-Maeda, 2013)	(Niemann S, 2009)

Indels contributed significantly to the clonal diversification of the MDR-TB outbreak-associated strains

Genome-wide-based Maximum Likelihood phylogenetic tree

What have we learned from microgenomics on the biology of the MDR-TB outbreak? Comparative genomics coupled to structural analysis disclosed the possible role of the *rpoB* secondary mutation, V615M, in fitness cost compensation

No putative compensatory mutations either in *rpoC* or in *rpoA* coud be identified

V615M maps to the flexible bridge helix structure which interact with DNA

The outbreak-restricted secondary site *rpoB* mutation, V615M, did indeed restore the fitness costs of S531L

Engineered mutant BCG harboring V615M +S531L grows as efficiently as WT-BCG

Engineered mutant BCG harboring V615M +S531L and WT-BCG display comparable fitness An in-frame deletion in the ferredoxin gene is likely to be critical to the epidemic potential of the Tunisian MDR outbreak strain

Shared, outbreak-restricted, deletions to be further explored by functional genetics

Main outputs from comparative genomics

- Phylogenomics confirm the relatedness of the Tunisian MDR-TB outbreak strain with the epidemic CDC1551 and C strains
- The genome of the MDR-TB outbreak strain appears to evolve rapidly, mainly through frequent indel events
- Rationale comparative genomics identified key deletion events which could have contributed to the epidemic phenotype of the Tunisian MDR outbreak strain

An in-depth snapshot of the molecular epidemiology of the *M. tuberculosis* Haarlem genotype in the epidemic region

All Haarlem strains and variants co-evolving with the MDR-TB outbreak (2001-2011) were included in a MIRU-VNTR24 typing analyses

The MTB Haarlem strain family, northern Tunisia, is likely to be intrinsically epidemic and genetically unstable

- MDR-TB outbreaks can emerge and successfully expand in a HIVnegative context
- Evolution to the XDR phenotype is likely to be a associated with the genetic trait of the involved strain rather than treatment default
- The Tunisian MDR-TB outbreak benefited of an intrinsic epidemic potential coupled to a rapid genomic evolution, mainly through indels

