Designing Protected Areas to Conserve Biodiversity:
A Case Study of the Malagasy Lemurs

Heather Peacock, Steig Johnson, Darren Bender
3rd International Conference on Biodiversity & Sustainable Energy Development 2014
Lemurs – Madagascar’s Primates

• Highly diverse: 101 recognized species
• Arboreal primates
• Range of:
 – Sizes: 30 g to ~7 kg
 – Activity pattern
 – Foraging strategies
 – Social structure
• Female dominant
• Umbrella species
Madagascar = Global Conservation Priority

Species Diversity
“Hotspot”

Species Endemism

Higher Order Endemism

Habitat Diversity

101 lemur species
94% at risk of extinction

High Rates of Forest Loss
Protected Areas

• One of the most successful measures implemented for the conservation of biodiversity

• Often selected opportunistically
 – Undevelopable land
 – Lower cost to acquire
 – Not necessarily to protect species
 • Recreational or cultural value

• Varying levels of protection –
 – IUCN categories
 – Most with some recreational use or resource extraction
Protected Areas of Madagascar

PAs cover 41,633 km2
~ 7-8% of Madagascar

(WDPA 2009)
Conservation Planning

• Systematic methods/models
 – Select PAs to maximize biodiversity protection
 – Consider size, shape, connectivity, location and cost

1. Determine patterns of diversity
2. Set conservation targets
3. Evaluate current reserve system
4. Fill in the gaps to meet targets
5. Prioritize where to focus efforts
Research Goal

Determine if PAs in Madagascar represent lemur diversity effectively
Research Questions

• What are the patterns of lemur diversity?

• How much of lemur geographic ranges are protected within the existing PA network?

• Does the PA network include sufficient lemur habitat to be adequately protected?

• If not, where can the PAs be expanded so that they do?

• Where are the priority areas to conserve first?
Distribution of Lemur Diversity
Distribution of Lemur Diversity
Conservation Planning

- Algorithm systematically selects areas to be included in reserve network
- Maximizes species protection while minimizing area (cost)
- 2 scenarios:
 - Optimal network
 - Ignoring existing PAs
 - Where to expand current PA network
Conservation Targets

Targets by Area:

<table>
<thead>
<tr>
<th>Range Size</th>
<th>Area (ha)</th>
<th>% Range to Include</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>88 - 446</td>
<td>100%</td>
</tr>
<tr>
<td>Moderately Small</td>
<td>446 - 1,273</td>
<td>75%</td>
</tr>
<tr>
<td>Moderately Large</td>
<td>1,273 - 5,181</td>
<td>50%</td>
</tr>
<tr>
<td>Large</td>
<td>5,181 - 43,100</td>
<td>25%</td>
</tr>
</tbody>
</table>

Additional Targets by Status:

<table>
<thead>
<tr>
<th>Status</th>
<th>Percent Range Added</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critically Endangered</td>
<td>+25%</td>
</tr>
<tr>
<td>Endangered</td>
<td>+20%</td>
</tr>
<tr>
<td>Vulnerable</td>
<td>+15%</td>
</tr>
<tr>
<td>Near Threatened</td>
<td>+10%</td>
</tr>
<tr>
<td>Least Concern</td>
<td>+0%</td>
</tr>
<tr>
<td>Data Deficient</td>
<td>+15%</td>
</tr>
</tbody>
</table>
Results: Optimal Network

Total Area = 66,280 km2
Results: Optimal Network

Optimal area requirements for 24 species not met by 9-20% of range

Total Area = 66,280 km²
Overlap with PA network = 59.5%

Optimal area requirements for 24 species not met by 9-20% of range
Results: Expansion Scenario

Protected Areas = 41,633 km\(^2\)
Results: Expansion Scenario

Total Area = 93,500 km2
Percent greater than PA network = 225%

Optimal area requirements for 24 species not met by 9-20% of range
Important Area: Optimal Network

Important Area = 43,370 km²
= 70% of predicted network
Important Area: Optimal Network

Important Area = 43,370 km2
Important Area In PAs = 17,239 km2
Overlap = 41.4%
Important Area: Expansion Scenario

Important Area = 83,460 km2
= 90% of predicted network
Important Area: Expansion Scenario

Important Area = 83,460 km2
Important Area In Addition To PAs = 41,826 km2
= 100% > existing network

Total area required
= 15% of Madagascar
Prioritization

- Algorithm iteratively selects pixels to remove that contribute the least amount of loss
- Keep removing until there are no pixels left
- Looked at top 10% area
 - “Durban Vision”
 - political target

It it enough?
Results: Priority Areas (Top 10%)

Priority area meets targets for 43 species
Results: Priority Areas (Top 10%)

Only 39% of Priority Areas within PAs
Results: Priority Areas (Top 10%)

70% of Priority Areas within Expansion Scenario
Key Findings

PA network meets conservation targets for:

• 30 / 98 species
 ➢ 9 species not represented at all
 ➢ 22 species only represented by 1 PA

Need to *double* the PA network to meet targets

• To cover ~15% of Madagascar

Top 10% priority area meets conservation targets for:

• 43 / 98 species
Key Findings

- Design PAs for species specific conservation
- Use both methods for comprehensive results
- Methods applicable to other areas of conservation concern:
 - Southeast Asia
 - Africa
 - South and Central America
Thank-you!