Designing Protected Areas to Conserve Biodiversity: A Case Study of the Malagasy Lemurs

Heather Peacock, Steig Johnson, Darren Bender 3rd International Conference on Biodiversity & Sustainable Energy Development 2014

Lemurs – Madagascar's Primates

- Highly diverse: 101 recognized species
- Arboreal primates
- Range of:
 - Sizes: 30 g to \sim 7 kg
 - Activity pattern
 - Foraging strategies
 - Social structure
- Female dominant
- Umbrella species

Madagascar = Global Conservation Priority

Protected Areas

- One of the most successful measures implemented for the conservation of biodiversity
- Often selected opportunistically
 - Undevelopable land
 - Lower cost to acquire
 - Not necessarily to protect species
 - Recreational or cultural value
- Varying levels of protection
 - IUCN categories

- Most with some recreational use or resource extraction

Protected Areas of Madagascar

PAs cover 41,633 km² ~ 7-8% of Madagascar

Conservation Planning

- Systematic methods/models
 - Select PAs to maximize biodiversity protection
 - Consider size, shape, connectivity, location and cost

- 1. Determine patterns of diversity
- 2. Set conservation targets
- 3. Evaluate current reserve system
- 4. Fill in the gaps to meet targets
- 5. Prioritize where to focus efforts

Research Goal

Determine if PAs in Madagascar represent lemur diversity effectively

Research Questions

- What are the patterns of lemur diversity?
- How much of lemur geographic ranges are protected within the existing PA network?
- Does the PA network include sufficient lemur habitat to be adequately protected?
- If not, where can the PAs be expanded so that they do?
- Where are the priority areas to conserve first?

Lemur Ranges

Distribution of Lemur Diversity

Distribution of Lemur Diversity

Conservation Planning

- Algorithm systematically selects areas to be included in reserve network
- Maximizes species protection while minimizing area (cost)
- 2 scenarios:
 - Optimal network
 - Ignoring existing PAs
 - Where to expand current PA network

Conservation Targets

Targets by Area:

Range Size	Area (ha)	% Range to Include
Small	88 - 446	100%
Moderately Small	446 - 1,273	75%
Moderately Large	1,273 - 5,181	50%
Large	5,181 - 43,100	25%

Additional Targets by Status:

Status	Percent Range Added
Critically Endangered	+25%
Endangered	+20%
Vulnerable	+15%
Near Threatened	+10%
Least Concern	+0%
Data Deficient	+15%

Results: Optimal Network

Results: Optimal Network

Results: Expansion Scenario

Results: Expansion Scenario

Important Area: Optimal Network

Important Area: Optimal Network

Important Area = 43,370 km² Important Area In PAs = 17,239 km² Overlap = 41.4%

Important Area: Expansion Scenario

100 50 0 100 1:3,000,000 KILOMETERS

Important Area: Expansion Scenario

Important Area = 83,460 km² Important Area In Addition To PAs = $41,826 \text{ km}^2$ = 100% > existing network Total area required = 15% of Madagascar

Prioritization

- Algorithm iteratively selects pixels to remove that contribute the least amount of loss
- Keep removing until there are no pixels left
- Looked at top 10% area
 - "Durban Vision"
 - political target

It it enough?

Results: Priority Areas (Top 10%)

Results: Priority Areas (Top 10%)

Results: Priority Areas (Top 10%)

70% of Priority Areas within Expansion Scenario

Key Findings

PA network meets conservation targets for:

- 30 / 98 species
- ➢ 9 species not represented at all
- > 22 species only represented by 1 PA

Need to *double* the PA network to meet targets

• To cover ~15% of Madagascar

Top 10% priority area meets conservation targets for:

• 43 / 98 species

Key Findings

- Design PAs for species specific conservation
- Use both methods for comprehensive results
- Methods applicable to other areas of conservation concern:
 - Southeast Asia
 - Africa
 - South and Central America

