Basic Designing of Mechanical Vapor Compressor in Multi-Effect Distillation for Fresh Water Production

Gyeongsang National University Hanshik Chung

Thermal and Fluid Research Group Department of Mechanical and Precision Engineering, GNU

CONTENTS

- Background of Study
- Introduction & Objective
- Results and discussion
- Conclusions

Fresh Water Generation System ;

Why and What is MED ?

MED 담수 생산원리 Feed Water Steam

MSF
 (Multi Stage Flash Desalination)

•MED (Multi Effect Desalination)

 (1) MED-TVC : MED by TVC (Thermo Vapor Compressor)
 (2) MED-MVC : MED by MVC (Mechanical Vapor Compressor)

MVC and MED System

Mechanical vapor compressor design.

Assumptions and Simulation Conditions

- Steady state conditions
- 3D periodic model with CFD software package (CFX 12)
- To reduce the computational cost, only single passage
- 119,291 nodes and 613,893 elements

NUMERICAL MODELING

3-Grid computational domain

Governing Equation

- 3-D Reynolds averaged compressible Navier-Stokes equations
- SST k-ω turbulence model

Mass and momentum conservation equations

$$\frac{\partial}{\partial x_{i}}(\rho u_{i}) = 0 \quad (1)$$

$$\frac{\partial}{\partial x_{i}}(\rho u_{i}u_{j}) = -\frac{\partial p}{\partial x_{i}} + \frac{\partial p}{\partial x_{j}}\left[\mu\left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} - \frac{2}{3}\delta_{ij}\frac{\partial u_{i}}{\partial x_{i}}\right)\right] + \frac{\partial}{\partial x_{j}}\left[\mu_{i}\left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}}\right) - \frac{2}{3}\left(\rho k + \mu_{i}\frac{\partial u_{i}}{\partial x_{i}}\right)\delta_{ij}\right] \quad (2)$$

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_{j}}(\rho U_{j}k) = \tau_{ij}\frac{\partial u_{i}}{\partial x_{j}} - \beta^{*}\rho a k + \frac{\partial}{\partial x_{j}}\left[(\mu + \sigma_{k}\mu_{i})\frac{\partial k}{\partial x_{j}}\right] \quad (3)$$

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_{j}}(\rho U_{j}k) = \tau_{ij}\frac{\partial u_{i}}{\partial x_{j}} - \beta^{*}\rho a k + \frac{\partial}{\partial x_{j}}\left[(\mu + \sigma_{k}\mu_{i})\frac{\partial k}{\partial x_{j}}\right] + 2\rho(1 - F_{1})\sigma_{\omega}\frac{1}{\omega}\frac{\partial k}{\partial x_{j}}\frac{\partial \omega}{\partial x_{j}} \quad (4)$$

Details of geometry and flow condition in inlet

Number of rotor blades @ each stage	14	
Number of stator blades	15	
Diameter impeller 1	Inside : 282 mm	
	Outside : 750 mm	
Diameter impeller 2	Inside: 298 mm	
	Outside : 792 mm	
Diameter guide vane	Inside : 298 mm	
	Outside : 792 mm	
Basic rotating speed	3650 rpm	
Total pressure @ inlet	24.1 kPa	
Specific enthalpy @ inlet	2.62×10 ⁶ J /kg	
Specific entropy @ inlet	7.84 ×10 ³ J /kg.K	
Static temperature @ inlet	64.1°C	

Fluid properties

Properties of saturated steam.

PROPERTY	VALUE	
Molar mass	18.015 kg/kmol	
Critical Volume	55.95 cm³/mol	
Critical Temperature	647.14 K	
Critical Pressure	220.64 bar	
Boiling temperature	64.1° C	
Acentric Factor	0.344	

Boundary conditions.

SETTING	ТҮРЕ	
Inlet	Total pressure, total temperature	
Outlet	Average static pressure Mass flow out	
Interface Models	Frozen Rotor	
Blade	Heat transfer Mass and Momentum	adiabatic no slip wall
	Wall roughness	smooth wall

RESULTS AND DISCUSSION

Compressors performance map at various rotational speeds.

Mass flow rates and efficiencies for various Rotational speeds.

.Temperature and discharge pressure at various rotational speeds.

Flow field at blade in blade passage at (a) 16.6%, (b) 50%, and (c) 83.3%

Contour of static entropy and plot of velocity vector for 4500 rpm rotational speed at low suction mass flow rate.

Three-dimensional flow structure in flow passage (a, b, and c) and blade loading at rotor and stator at low suction mass flow rate.

CONCLUSION

- The effects of various operating conditions on the compressor performance have been investigated.
 - At a high discharge pressure, the blockage effect was very dominant, restricting the flow rate.
- A detailed flow analysis was performed in this simulation, along with an examination of secondary phenomena.
- The results clearly show the flow characteristics inside the compressor under different operating conditions.
- This simulation showed that the widest stable operating zone was located at a high rotational speed.

THANK YOU!

Do You Have Any Questions?

