International Conference and Exhibition on **Satellite** August 17-19, 2015 Houston, Texas, USA

Current Land Subsidence in the Houston Metropolitan Area, Texas, Derived from GPS Observations (1993-2012)

Guoquan (Bob) Wang August 17, 2015

Outline

• GPS Geodesy Infrastructure in the Houston area

Public available GPS stations (Hardware) Stable Houston Reference Frame (SHRF) (Firmware)

Single-receiver phase ambiguity resolved GIPSY PPP resolution (software)

- Current subsidence mapping (2005-2012)
- Scientific Questions:

(1) Is there deep seated (or fault-controlled) subsidence in the Houston area?(2) When will the current subsidence stop?

⁽Harris-Galveston Coastal Subsidence District)

Houston Ship Channel Area

\$ 42.23/Barrel August 14, 2015

Geodesy Infrastructure: Permanent GPS Stations

170 Permanent GPS

Harris-Galveston Subsidence District (80)

Texas Department of Transportation 15+ NGS, Houston City, SmartNet, others

University of Houston

HoustonNet

NSF MRI (Major Research Instrumentation Grant--HoustonNET). MRI: Acquisition of GPS Equipment for Establishing a Continuously Operating Dense GPS Network in Houston Metropolitan Area for Urban Natural Hazards Study (September 1, 2012---August 30, 2014). PI: Guoquan Wang, Co-Pls: Shuhab Khan (Geosciences), Barry Lefer (Atmospheric Science), Thomas Hsu (Civil Engineering), Ramesh Shrestha (Geodetic Imaging), Paul Mann (Natural Hazards), William Carter (Survey Technology Engineering), Yi-Lung Mo (Structural Engineering), Hassan Moghaddam (Land Surveying), Craig Glennie (Airborne Surveying), Hyongki Lee (Remote Sensing).

- 50 GPS
- Subsidence, faulting, and salt dome uplift
- Hurricane intensity forecasting
- Civil engineering community---buildings, bridges, dams, sea walls

Journal of Geodetic Science

• 3(3) • 2013 • 188-202 DOI: 10.2478/jogs-2013-0021 •

A stable reference frame for the study of ground deformation in the Houston metropolitan area,

Texas

Research Article

G. Wang*, J. Yu, J. Ortega, G. Saenz, T. Burrough and R. Neill

Helmert Transformation

Wang et al., 2013, 2015

14-Parameter Similarity Transformation

$$X(t)_{SHRF} = T_X(t) + [1 + s(t)] \cdot X(t)_{IGS08} + R_Z(t) \cdot Y(t)_{IGS08} - R_Y(t) \cdot Z(t)_{IGS08}$$
$$Y(t)_{SHRF} = T_Y(t) - R_Z(t) \cdot X(t)_{IGS08} + [1 + s(t)] \cdot Y(t)_{IGS08} + R_X(t) \cdot Z(t)_{IGS08}$$
$$Z(t)_{SHRF} = T_Z(t) + R_Y(t) \cdot X(t)_{IGS08} - R_X(t) \cdot Y(t)_{IGS08} + [1 + s(t)] \cdot Z(t)_{IGS08}$$

(1) Translation along the respective axis (in meters)

(2) Differential Scaling of the respective axis (ppb)

(3) Counterclockwise Rotations (in radians)

14-Transformation Parameters

Transformation Parameter	Unit	IGS08 to SHRF	IGS08 to NAD83(2011)	
		$t_0 = 2012$	$t_0 = 1997*$	
$T_{x}(t_{0})$	cm	0.00000	99.34300	
$T_v(t_0)$	cm	0.00000	-190.33100	NGS
$T_z(t_0)$	cm	0.00000	-52.65500	
$\mathbf{R}_{\mathbf{x}}(t_0)$	mas	0.00000	25.91467	
$\mathbf{R}_{\mathbf{v}}(t_0)$	mas	0.00000	9.42645	
$\mathbf{R}_{z}(t_{0})$	mas	0.00000	11.59935	
$s(t_0)$	ppb	0.00000	1.71504	
dT _x	cm/year	-1.07250	0.07900	
dT _v	cm/year	-1.05876	-0.06000	
dT_z	cm/year	-3.54574	-0.13400	
dR _x	mas/year	1.15720	0.06667	
dR _v	mas/year	-0.93885	-0.75744	
dR_z	mas/year	-0.33224	-0.05133	
ds	ppb/year	1.37220	-0.10201	

*Pearson and Snay (2013), Table 7

A comparison of positional time series with respect to three reference frames: IGS08, NAD83, SHRF

Horizontal Velocity Vectors Referred to: IGS08, NAD83, SHRF

Global-Scale (IGS08)

Regional-Scale (NAD83)

Local-Scale (SHRF)

Spatial and Temporal Variation of Subsidence

Recent Subsidence Mapping (2005-2014)

85 GPS (> 3 years) +11 Extensometers

Question 1: Is there deep-seated or fault-controlled subsidence in the Houston-Galveston area?

USGS Borehole Extensometers

Addicks Borehole Extensometer (-549 m)

-95.5°

-95°

Co-Located GPS and Extensometer Monitoring Site (ADKS)

1996-2013

Wang et al., 2014

Subsidence Derived from Closely-Spaced GPS (PA05) and Extensioneter Observations (2000-2012)

Conclusion: The compaction should occur in the sediments above -549 m.

Wang et al., 2014 Journal of Surveying Engineering

Co-located GPS and Extensometer Sites

Decimal Year (1993-2013)

Clear Lake—Jonson Space Center Sites

Clear lake Deep Borehole (-936 m)

Conclusion: There were compaction between -235 m to -530 m. No compaction below -530 m.

Conclusion: Only partial of the Evangeline aquifer had been compacted!

Compaction vs. Subsidence

Double Pipes

UH Coastal Center "Vertical" GPS Array

JONES STATE FOREST PARK GPS ARRAY

WEST LIBERTY AIRPORT GPS ARRAY

Question 2: When will the subsidence cease?

Ground Subsidence vs. Chicot and Evangeline Groundwater Heads at Addicks Extensometer Site

Year (1993-2014)

Groundwater Level Change (2005-2014)

Preconsolidation Head: -35 m

Kearns et al., 2015

Conclusion: It took 20 years (1978-1998) to halt the subsidence in the southeast part.

Summary

- The ground water and aquifer systems respond slowly to human actions. It took almost two decades (1980s and 1990s) to halt the subsidence in the south-east part of the Houston metropolitan area. Therefore, a long-term perspective is needed to manage groundwater resources and control land subsidence.
- The spatial and temporal variation of subsidence could be very considerable! subsidence=f(x,y,z,t)
- There is no considerable deep-seated or fault-controlled subsidence in the Houston-Galveston area. Current aquifer compaction is limited to about -500m.

Thanks for attending the satellite conference!

2014 Spring GEOL4332: Geoscience Applications of GPS and LIDAR