8 th Euro Biotechnology Congress

One-step biosynthesis of α-keto acids by the L-amino acid deaminase: Biocatalyst construction and process optimization

Guocheng Du Jiangnan University Wuxi, China http://www.jiangnan.edu.cn

1. Applications of α-keto acids

■ 2. Comparison of different production methods

3. Biotransformation production of α-keto acids

4. Summary

1. Applications of α-keto acids

Types and structures of α-keto acids

Applications

α-Keto acids find wide applications in food, medicine, health, and chemical synthesis.

Food

- Substitution for amino acids as food Reducing the burden of liver and kidney for patients.
	- Improving the flavor and taste
	- α-Ketoisocaproic acid can improve the flavor of sausage and cream.

Medicine

- The α-Ketoisocaproic acid can improve immunity by increasing the permeability of lymphocytes.
- The α-Ketoisocaproic acid can improve feeding conversion rate without affecting the quality of the meat.

Applications

Beauty and health

- \blacksquare a-keto acids as additives for skin-care working well on moistening, anti-wrinkle, anti-aging, and anti-anaphylaxis.
- α-keto acids have significant effects on skin whitening and inhibition of black spots.

Chemical synthesis

 \blacksquare α-keto acids can be used to synthesize α -hydroxy acids by nucleophilic addition with aldehyde ketone.

2. Comparison of different production methods

Production methods-Chemical synthesis

Chemical synthesis: the main method to produce keto acids

- **Advantages: short reaction path, high conversion rate.**
- **Disadvantages: toxic catalyst, high temperature, pressure, and energy consumption.**

Production methods-Microbial fermentation

Some keto acids (pyruvic acid, α-ketoglutaric acid) can be produced by fermentation.

- ●**Advantages: recycle of raw material and low pollution.**
- ●**Disadvantages: complicated metabolic pathway and low conversion rate.**

Metabolic pathways of pyruvic acid and α-ketoglutaric acid in *Yarrowia lipolytica*

Production methods-Biotransformation

L-amino acid deaminases (L-AAD) can be used to produce keto acids (αketoglutaric acid, α-phenylpyruvic acid) by biotransformation of amino acids.

 AA

 $Pm1$

- ●**Advantages: high conversion rate (>70%)**, simple reaction system and low **purification costs.**
- ●**Disadvantages: not very high production because of low substrate tolerance.**

 For the same amino acid, amino oxidases from different sources have different conversion rates.

 LAD ^[20]

3.5

27.3

43.6

55.4

 1.1

 1.1

79.9

105.0

100.0

37.4 0.7

 1.1

41.6

92.8

3.5

Pma^[8]

0.6 28.2

 0.0

10.9

1.9

 1.3

0.6

1.3

 0.0

2.6

41.7

1.9

16.7

 3.2

 1.3

 0.0

 3.2

0.6

1.3

100.0

3. Biotransformation production of α-keto acids

Example 1: Biotransformation of L-glutamate to α-KG

 α -KG(α -ketoglutaric acid), a rate-determining intermediate in the Krebs cycle, plays crucial roles in cellular energy metabolism, coordinating carbon ,and nitrogen utilization and has a wide range of applications.

Body reinforcing agent and additives of drink

Free radical scavenging and anti-aging

Improve reproduction rate Organic intermediates
and promote bone's growth

Biotransformation of L-glutamate to α-KG

 $NH₂$

Chemical synthesis

 \bullet Currently α -KG is produced mainly by chemical synthesis.

Advantages of biotransformation:

- one-step and high efficiency.
- no toxic catalyst and less pollution.

Expression and purification of N-terminus deleted L-AAD

- L-AAD gene was cloned from *Proteus mirabilis*.
- *P. mirabilis* pm1, a transmembrane protein, catalyzes many amino acids to keto acids. Compared with amino acid oxidases, L-AAD doesn't need cofactor and no byproduct hydrogen peroxide is produced.

- **To get purified protein, transmembrane regions (21~87 nucleotides) was deleted, resulting in the formation of inclusion bodies.**
- **Refolding of inclusion bodies and the active protein was obtained.**
- **Optimal temperature and pH of the refolded protein: 45^oC, pH 8.0.**

Optimization of biotransformation conditions

- **Transformation of L-glutamate with the refolding enzymes and the reaction conditions were optimized.**
- **Optimal conditions**: L-glutamate 12g/L, enzyme 0.1 g/L, MgCl₂ 5mM, temperature 45 $\mathrm{^{\circ}C}$, and pH 8.0;
- **•** Transformation for $\underline{6}$ \underline{h} , the conversion rate is $\underline{12.6\%}$ and α -KG production is **1.5 g/L**.

Construction of whole-cell biocatalyst

- **Compared with free enzymes, whole-cell biocatalysts are more convenient to use, less expensive to prepare, and more stable.**
- **Two expression system (***E. coli* **and** *B. subtilis***) of** *P. mirabilis* **pm1 was constructed.**
- \bullet *B. subtilis* L-AAD showed higher activity and more suitable for producing α -KG.

pET-20b(+)-*pmAAD* (*E. coli* BL21) ND 2.4±0.13 21.7±0.39

Optimization of whole-cell biotransformation of *B. subtilis*

- Optimizing the transformation conditions of *B. subtilis* whole-cell catalyst. Optimal conditions: L-glutamate $15g/L$, biocatalyst 20 g/L, MgCl₂ 5mM,
- temperature 40 $\mathrm{^{\circ}C}$, and pH 8.0;
- Biotransformation for **24h**, the conversion rate is **31%** and α-KG titer is **4.7 g/L**.

Optimization of transformation conditions

Directed evolution and site-directed mutagenesis of L-AAD

 Three rounds of error prone PCR was performed and the key sites were identified. Then site-directed mutation was performed and the optimal mutant F110I/A255T/E31D/R228C L249S/I351T was obtained.

● F110I/A255T/E31D/R228C/L249S/I351T exhibited 57.2% of conversion rate and 8.6 g/L of α-KG production.

Directed evolution, site-directed mutagenesis, and modeling of L-AAD based on high throughput screening

Deletion of α-KG dehydrogenase to reduce its degradation

 α-KG dehydrogenase gene (*SucA*) was knocked out, the conversion rate and production of α -KG were improved to 85.3% and 12.2 g/L, respectively.

AsucA mutant

 Ω

Wild type B. subtilis

Electrophoresis map for deletion of *SucA* and the uptake of α-KG by mutant strain

Time profile for the biotransforamtion of L-glutamic acid to α-KG by wildtype, engineered and mutant whole cell biocatalyst

Gene shuffling and error-prone PCR of L-AAD were used to improve the biotransformation of glutamate to α-KG

Mutation occurred in the L-AAD after eight round of ep-PCR and three round of gene shuffling experiments **G259W/D362N/N150K/ Q278L/ G437V / G193A / P320S / P246A / D374V / D340E / V271I / V445A / A295H / P415F / E383H / D147A / I317F / G291R /S408G/E366K/N418/V269I/E400K/P275N/V258I/L378T/L267M/ E389Q/A285G/A286V/ R251Q**

Strategy for the evolution of L-amino acid deaminase (pm133-8) by gene shuffling with LAAD from P. vulgaris:

Express and screening for better mutant

Biotransformation of glutamate to α-KG by mutant L-AAD containing biocatalysts in the flask

 By gene shuffling and error-prone PCR of L-AAD, α-KG production was improved to 52.7 g/L.

Biotransformation of glutamate to α-KG by mutant L-AAD containing biocatalysts in the 3L fermenter

 The conversion rate was about 67.7% and α-KG production was improved to 58.6 g/L in the fed-batch system.

Example 2: Biotransformation of L-phenylalanine to PPA

Phenylpyruvic acid (PPA) is widely used in the pharmaceutical, food, and chemical industries.

Pharmaceutical intermediates Food Fine chemistry

Animal feeding b-phenylalanine Phenyllactic acid

Expression and purification of the L-AAD

• **L-AAD gene from** *P. mirabilis* **were expressed and induction conditions and purification steps were optimized.**

- The optimal induction conditions: pH 8, 0.04 mM IPTG, OD_{600} 0.6, and induction at 20 \degree C for 12 h.
- The enzyme was purified **52 fold**, with an overall yield of **13%**, corresponding to a specific activity of 0.94 μ mol PPA min/mg protein

Optimization of enzymatic biotransformation

• **Characterization of L-AAD and enzymatic transformation**

The maximal conversion rate and PPA titer reached **86.7%** and **2.6 g/L** at **2.5 h**: 0.2 g/L L-AAD, 3 g/L of L-phenylalanine, 5 mM FAD, 35 \degree C and pH 7.4.

Whole-cell transformation system

at $6 h$: 1.2 g/L of biocatalyst, 4 g/L of L-phenylalanine, 40 °C and pH 7.4.

Metabolic engineering of to delete PPA degradation pathway in *E. coli*

- Three aminotransferases participate in the degradation of PPA
- Single-, double-, and triple-deletion mutants were constructed in *E. coli* BL21 (DE3) to determine the amount of PPA degradation

2015/07/28/28 **For the triple-deletion mutant** *E. coli* **BL21 (DE3) (Δ***tyrB***Δ***aspC***Δ***ilvE***), and the PPA titer was improved to 3.9 g/L.**

Directed evolution and site-directed mutation of L-AAD

 Two rounds of error prone PCR was performed and the key sites were identified. Then site-directed mutation was performed and the mutant D165K/F263M/L336M was obtained.

- **The triple mutant D165K/F263M/L336M produced the highest PPA titer of 10.0 g/L with a conversion ratio of 100%.**
- **Kinetics analysis showed that the triple mutant had a higher substratebinding affinity and catalytic efficiency than that of wild type.**

Fed-batch biotransformation in flask

- Maintain the L-phenylalanine concentration below 10 g/L.
- Beginning with 10 g/L of L-phenylalanine, a specific amount of L-phenylalanine was added and the feeding interval was optimized.

By feeding the substrate every hour, the maximal PPA production was 21 g/L within 8 h with the total L-phenylalanine at 31 g/L.

Effect of PPA addition on initial rate

To determine of product inhibition constant, different concentration of PPA was added to the biotransformation system. Kinetic analysis showed it is a kind of competitive inhibition.

 the engineered recombinant *E. coli*. the wild type recombinant *E. coli*.

Competitive inhibition

 -0 g/L PPA -10 g/L PPA -15 g/L PPA -20 g/L PPA -25 g/L PPA

A, the engineered recombinant *E. coli*.

B, the wild type recombinant *E. coli*.

Effect of PPA addition on initial rate

Development of model based on initial rate studies

General rate equation for PPA production

$$
\frac{d[P]}{dt}|_{i} = V_{P}[\frac{[S_{i}]}{K_{m}(1 + \frac{[P_{i}]}{K_{p_{i}}}) + [S_{i}](1 + \frac{[S_{i}]}{K_{s_{i}}})}][Ei]
$$

Consumption of L-phenylalanine

$$
\frac{\mathrm{d}[S]}{\mathrm{d}t}\big|_{i} = -\frac{\mathrm{d}[P]}{\mathrm{d}t}\big|_{i}
$$

Consumption of the biocatalyst

$$
\frac{\mathrm{d}[E]}{\mathrm{d}t}\big|_{i} = -k_{\mathrm{d}[E_{i}]}
$$

 k_d -deactivation constant

Experimental determination of rate constants

Batch biotransformation kinetics and model fitting for determination of rate constants

 The substrate and product inhibition of the engineered *E. coli* **were 65.8% and 68.1% that of the wild type strain.**

Biotransformation in 3-L fermentor

Whole-cell biotransformation in 3-L fermentor with different concentrations of L-Phe

The conversion rate reached 100% within 4 h and no substrate inhibition was observed within 35 g/L of L-Phe.

Improved dissolved oxygen speeds up the oxidative reaction and increases the productivity.

Example 3: Biotransformation of leucine to α-ketoisocaproate

 α-ketoisocaproate (KIC) is widely used in the pharmaceutical, health product and feed.

 KIC could serve as an integral part of therapy for chronic kidney disease to provide daily requirement of L-leucine.

 KIC could used as the the supplement for the weigh-control or in the physical training program. It has the capacity stimulate protein synthesis, and promote insulin secretion.

 In feed, KIC can promote the milk production and composition in cows, goats, and chickens.

α-ketoisocaproate production by transformation of leucine

Expression of L-AAD from *P. vulgaris* **in** *E. coli*

Optimization of KIC production by the whole-cell biocatalyst

Effect of L-leucine transporters on whole-cell biocatalyst activity

- **Carbonyl cyanide-3-chlorophenylhydrazone (CCCP) was used to uncouple the agents that catalyze electrogenic proton movement, in order to reduce ATP generation and inhibit livK, livJ, and BrnQ transport efficiency.**
- **CCCP increased the biocatalyst activity at concentrations below 20 mM, and the highest KIC production reached 47.1 g/L with 400 mM leucine.**

Effect of different L-leucine supply strategies on KIC production

 Batch and interval leucine feeding on KIC production were studied in flask.

- **In batch biotransformation KIC production reached 50.0 g/L with a leucine conversion rate of 96.1% (Fig. A).**
- **By the feeding of leucine at 2-h intervals (from 0 to 22 h), the KIC titer reached 69.1 g/L when while the leucine bioconversion rate decreased to 50.3% (Fig. B).**

Improve the expression of L-AAD with different plasmid copy number

Different plasmid copy numbers

a.u.: arbitrary units.

The effect of different plasmid copy number

The cell growth rate increased with the decreased plasmid copy number.

 p15A (with 10 copy number) reached the highest KIC production 76.5 g/L when leucine was added at 2-h intervals (from 0 to 12 h).

The effect of different plasmid copy number

Comparison of different *ori* **at RNA level, cell growth and KIC production**

 Higher plasmid copy number do not result in higher RNA level, which means that transcription of L-AAD is limited at higher plasmid copy number.

N-terminal codon bias and RNA structure affected KIC production

N-Terminal codons strongly related to ribosomal elongation. What' s more, N-terminal codons reduced mRNA secondary structure at the N terminus. So the mutants will change translational efficiency.

The highest KIC production reached 79.7 g/L

 Synthetic ribosome binding sites were optimized to control protein expression $140 -$

By evaluating the degenerate RBS library and selecting synthetic RBS sequences with target ∆Gs to improve the L-AAD expression level.

The highest KIC production reached 81.4 g/L

Summary

- **Biotransformation of L-glutamate to α-KG by L-AAD (pm1) from** *P. mirabilis*
- \checkmark N-terminus deleted L-AAD: the conversion rate is 12.6% and α -KG production is 1.5 g/L .
- \checkmark Directed evolution, site-directed mutagenesis & gene shuffling of L-AAD and the deletion of product degradation pathway were performed, and the best mutant exhibited 67.7% of conversion rate and 58.6 g/L of α -KG in the fed-batch biotransformation system.

Biotransformation of L-phenylalanine to PPA by L-AAD (pma) from *P. mirabilis*

- Under the optimal conditions for 12 h, the maximal conversion rate and PPA titer reached 82.5% and 3.3 g/L, respectively.
- \checkmark In 3-L fermentor, the conversion rate can be almost 100% within 4 h and no substrate inhibition was observed within 35 g/L of L-Phe.

Biotransformation of L-leucine to α-ketoisocaproate by L-AAD from *P. vulgaris*

- \checkmark On the optimal conditions, the α-ketoisocaproate titer reached 12.7 g/L with a leucine conversion rate of 97.8%.
- \checkmark The highest KIC production reached 76.5 g/L, 79.7 g/L, 81.4 g/L with the optimal the plasmid copy number, N-codon, RBS sequence, respectively.

Thanks for your attention!

性の差れる 社会 のこと