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1. Applications of α-keto acids  



Types and structures of  α-keto acids 
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Applications 

α-Keto acids find wide applications in food, medicine, health, 

and chemical synthesis. 

 Substitution for amino acids as food 
     Reducing the burden of liver and kidney for patients. 

 

 Improving the flavor and taste 

  α-Ketoisocaproic acid can improve the flavor of sausage and 

cream. 

Medicine 

 The α-Ketoisocaproic acid can improve immunity by increasing   

     the permeability of lymphocytes. 

 

 The α-Ketoisocaproic acid can improve feeding conversion   

     rate without  affecting the quality of the meat. 

Food 



Applications 

Beauty and health 

Chemical synthesis 

 α-keto acids as additives for skin-care working well on 

moistening, anti-wrinkle, anti-aging, and anti-anaphylaxis.  

  

 α-keto acids have significant effects on skin whitening and 

inhibition of black spots.  

 α-keto acids can be used to synthesize α-hydroxy acids 

by nucleophilic addition with aldehyde ketone. 



2. Comparison of different production methods 



Production methods-Chemical synthesis  

 Chemical synthesis: the main method to produce keto acids 

 ● Advantages: short reaction path, high conversion rate.  

  ● Disadvantages: toxic catalyst, high temperature, pressure, and energy 

consumption. 

Nucleophilic substitution of  grignard 

reagent and diethyl oxalate Hydrolysis 
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Production methods-Microbial fermentation 

Some keto acids (pyruvic acid, α-ketoglutaric acid) can be produced by 

fermentation. 

  ●Advantages: recycle of raw material and low pollution. 

   ●Disadvantages: complicated metabolic pathway and low conversion rate. 

Metabolic pathways of pyruvic acid and α-ketoglutaric acid in Yarrowia lipolytica 



Production methods-Biotransformation 

L-amino acid deaminases (L-AAD) can be used to produce keto acids (α-

ketoglutaric acid, α-phenylpyruvic acid) by biotransformation of amino 

acids. 

 ●Advantages: high conversion rate (>70%), simple reaction system and low 

   purification costs. 

 ●Disadvantages: not very high production because of low substrate tolerance. 

       For the same amino acid, amino oxidases from 

different sources have different conversion rates. 



3. Biotransformation production of α-keto acids  



 -KG(-ketoglutaric acid), a rate-determining intermediate in the 

Krebs cycle, plays crucial roles in cellular energy metabolism, 

coordinating carbon ,and nitrogen utilization and has a wide range of 

applications. 

 Free radical scavenging and anti-aging 

Improve reproduction rate 

 and promote bone’s growth 
Organic intermediates 

Body reinforcing agent and additives of drink 

Example 1: Biotransformation of L-glutamate to α-KG 



Biotransformation of L-glutamate to α-KG 

● Currently -KG  is produced 

mainly by chemical synthesis. 

Advantages of biotransformation: 

● one-step and high efficiency. 

● no toxic catalyst and less pollution. 

Chemical synthesis  

Biotransformation 



 
Expression and purification of N-terminus deleted L-AAD 

 
 L-AAD gene was cloned from Proteus mirabilis.  

 P. mirabilis pm1, a transmembrane protein, catalyzes many amino acids to keto acids. 

 Compared with amino acid oxidases, L-AAD doesn't need cofactor and no byproduct  

    hydrogen peroxide is produced. 

 To get purified protein, transmembrane regions (21~87 nucleotides) was  

    deleted, resulting in the formation of inclusion bodies. 

 Refolding of inclusion bodies and the active protein was obtained.  

 Optimal temperature and pH of the refolded protein: 45oC, pH 8.0. 



Optimization of biotransformation conditions 

 Transformation of L-glutamate with the refolding enzymes and the   

    reaction conditions were optimized. 

 Optimal conditions: L-glutamate 12g/L, enzyme  0.1 g/L, MgCl2  5mM,  

    temperature 45 oC, and pH 8.0； 

 Transformation for 6 h, the conversion rate is 12.6% and -KG production  

    is 1.5 g/L. 



Construction of whole-cell biocatalyst 

 Compared with free enzymes, whole-cell biocatalysts are more convenient to use,  

    less expensive to prepare, and more stable.  

 Two expression system (E. coli and B. subtilis) of P. mirabilis pm1 was constructed.  

 B. subtilis L-AAD showed higher activity and more suitable for producing -KG. 

Amino acid deaminase activity a 

                                       Cellular fraction 

  Construct 

Cultural broth Cytosol Membrane 

pHT43 (B. subtilis168)   NDb 3.9±0.08 ND 

pHT43-pmAAD (B. subtilis168) ND 4.1±0.11 55.3±1.73 

pET-20b(+) (E. coli BL21) ND 2.2±0.09 ND 

pET-20b(+)-pmAAD (E. coli BL21) ND 2.4±0.13 21.7±0.39 



Optimization of whole-cell biotransformation of B. subtilis 

 Optimizing the transformation conditions of B. subtilis whole-cell catalyst. 

 Optimal conditions: L-glutamate 15g/L, biocatalyst 20 g/L, MgCl2 5mM,  

    temperature 40 oC, and pH 8.0； 

 Biotransformation for 24h, the conversion rate is 31% and α-KG titer is 4.7 g/L. 

Optimization of transformation conditions 



Directed evolution and site-directed mutagenesis of L-AAD 

 Three rounds of error prone PCR was performed and the key sites were identified. 

 Then site-directed mutation was  performed and the optimal mutant  

    F110I/A255T/E31D/R228C L249S/I351T  was obtained. 

Round of ep-PCR/site-saturated mutant Mutation presents 

First round  (pm1-1) F110I/A255R 

Second round (pm1-2) F110I/A255R/E31D/R228F 

Third round (pm1-3) F110I/A255R/E31D/R228F/T249L/I351T 

Site-saturated-2 (pm1-3-1) F110I/R255T/E31D/R228F/T249L/I351T 

Site-saturated-4 (pm1-3-2) F110I/A255T/E31D/F228C/T249L/I351T 

Site-saturated-5 (pm1-3-3) F110I/A255T/E31D/R228C/L249S/I351T 

A B 

Directed evolution, site-directed mutagenesis, and modeling of L-AAD based on high throughput screening 

 F110I/A255T/E31D/R228C/L249S/I351T exhibited 57.2% of conversion rate and 

8.6 g/L of α-KG production.  



Deletion of α-KG dehydrogenase to reduce its degradation    

  α-KG dehydrogenase gene (SucA) was knocked out, the conversion rate 

and production of α-KG were improved to 85.3% and 12.2 g/L, respectively. 

Strains/Mutants Km (mM) Vmax (min-

1uM) 

Kcat (min-1) 
Kcat/ Km (uM-1min-1) 

Wild type 49.21+0.05 22.82+0.08 0.812 60.61 

pm1-1 41.42+0.04 32.48+0.08 0.859 48.21 

pm1-2 38.91+0.03 36.45+0.09 0.83 46.88 

pm1-3 34.12+0.01 40.76+0.04 0.839 40.66 

Electrophoresis map for deletion of SucA and the 

uptake of α-KG by mutant strain 

Time profile for the biotransforamtion 

of L-glutamic acid to α-KG by wild-

type, engineered and mutant whole 

cell biocatalyst 



Gene shuffling and error-prone PCR of L-AAD were used 

to improve  the biotransformation of glutamate to α-KG  

Mutation occurred in 

the L-AAD after eight 

round of ep-PCR and  

three round of gene 

shuffling experiments 

G259W/D362N/N150K/ Q278L/ G437V / G193A / P320S / P246A / D374V / 

D340E / V271I / V445A / A295H / P415F / E383H / D147A / I317F / G291R 

/S408G/E366K/N418/V269I/E400K/P275N/V258I/L378T/L267M/ 

E389Q/A285G/A286V/ R251Q 



Biotransformation of glutamate to α-KG by mutant L-AAD 

containing biocatalysts in the flask 

 By gene shuffling and error-prone PCR of L-AAD, α-KG 

production was improved to 52.7 g/L.  



Biotransformation of glutamate to α-KG by mutant L-AAD 

containing biocatalysts in the 3L fermenter 

 The conversion rate was about 67.7% and α-KG  production was 

improved to 58.6 g/L in the fed-batch system.  

Batch biotransformation 

Fed-batch biotransformation 



 Phenylpyruvic acid (PPA)  is widely used in the pharmaceutical, food, 

and chemical industries.  

Pharmaceutical intermediates Food Fine chemistry 

Animal feeding ᴅ-phenylalanine Phenyllactic acid 

 
Example 2: Biotransformation of L-phenylalanine to PPA 
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Expression and purification of the L-AAD 

 

• The enzyme was purified 52-

fold, with an overall yield of 

13%, corresponding to a 

specific activity of 0.94 µmol 

PPA min/mg protein 

• The optimal induction 

conditions: pH 8, 0.04 mM 

IPTG, OD600 0.6, and induction 

at 20 oC for 12 h. 

• L-AAD gene from P. mirabilis were expressed and induction conditions 

and purification steps were optimized. 
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The  maximal conversion rate and PPA titer reached 86.7% and 2.6 g/L at 2.5  

   h: 0.2 g/L L-AAD, 3 g/L of L-phenylalanine, 5 mM FAD, 35 oC and pH 7.4.  

Optimization of enzymatic biotransformation 

• Characterization of  L-AAD and enzymatic transformation 



Whole-cell transformation system 

The  maximal conversion rate and PPA titer reached 82.5% and 3.3 g/L 

at 6 h: 1.2 g/L of biocatalyst, 4 g/L of L-phenylalanine, 40 oC and pH 7.4.  
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For the triple-deletion mutant E. coli BL21 (DE3) (ΔtyrBΔaspCΔilvE), and 

the PPA titer was improved to 3.9 g/L. 

Metabolic engineering of to delete PPA degradation pathway 

in E. coli 

• Three aminotransferases participate in the degradation of PPA 

• Single-, double-, and triple-deletion mutants were constructed in E. coli BL21 

(DE3) to determine the amount of PPA degradation 



Directed evolution and site-directed mutation of L-AAD 

 The triple mutant D165K/F263M/L336M produced the highest PPA titer of 

10.0 g/L with a conversion ratio of 100%.  

 Kinetics analysis showed that the triple mutant had a higher substrate-

binding affinity and catalytic efficiency than that of wild type. 

 Two rounds of error prone PCR was performed and the key sites were identified. 

 Then site-directed mutation was  performed and the mutant  

    D165K/F263M/L336M was obtained. 

  

Enzymes 

Km 

(mM) 

Kcat (s
-

1) 

Kcat/Km 

(s-1M-1) 

Wild type 26.2±0.1 1.40 53 

D165G/S179L/F263V/L336V 24.1±0.4 1.82 76 

D165K 24.8±0.8 1.67 67 

L336M 24.5±0.9 1.69 69 

F263M 23.8±0.7 1.87 79 

D165K/F263M 22.6±0.4 2.16 96 

D165K/L336M 24.3±0.9 1.72 71 

F263M/L336M 22.4±0.4 2.21 99 

D165K/F263M/L336M 22.0±0.9 2.25 102 



By feeding the substrate every hour, the maximal PPA production 

was 21 g/L within 8 h with the total L-phenylalanine at 31 g/L. 

Fed-batch biotransformation in flask 

• Maintain the L-phenylalanine concentration below 10 g/L. 

• Beginning with 10 g/L of L-phenylalanine, a specific amount of L-phenylalanine 

was added and the feeding interval was optimized. 



Effect of PPA addition on initial rate 
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To determine of product inhibition constant, different concentration  

of PPA was added to the biotransformation system.  

Kinetic analysis showed it is a kind of competitive inhibition. 

 Competitive inhibition 

Effect of PPA addition on initial rate 



Development of model based on initial rate studies 

General rate equation for PPA production 

 Consumption of L-phenylalanine 

 Consumption of the biocatalyst 



Experimental determination of rate constants  
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Batch biotransformation kinetics and model fitting for determination of rate 

constants 

Constants 

Wild type strain 0.21 46.44 16.74 1.26×10-3 

Engineered strain 0.35 70.57 24.58 1.47×10-3 

 The substrate and product inhibition of the engineered E. coli  were 

65.8% and 68.1% that of the wild type strain. 



The conversion rate reached 100% within 4 h and no substrate inhibition 

was observed within 35 g/L of L-Phe. 

Improved dissolved oxygen speeds up the oxidative reaction and increases 

the productivity.  

Biotransformation in 3-L fermentor 

Whole-cell biotransformation in 3-L fermentor with different concentrations of 

L-Phe  



Example 3: Biotransformation of leucine to α-ketoisocaproate 

 α-ketoisocaproate (KIC) is widely used in the pharmaceutical, 

health product and feed.  

 KIC could serve as an integral part of therapy for 

chronic kidney disease to provide daily 

requirement of L-leucine. 

 KIC could used as the the supplement for the 

weigh-control or in the physical training 

program. It has the capacity stimulate protein 

synthesis, and promote insulin secretion. 

 In feed, KIC can promote the milk production 

and composition in cows, goats, and chickens. 



Expression of L-AAD from P. vulgaris in E. coli 

0.05 g/L lactose 

α-ketoisocaproate production by transformation of leucine  

 



 The optimal conditions were  

0.8 g/L cells, 20 g/L CaCO3 at 

35℃ for 16 h.  

The conversion rate was 97.8% 

with 13.1 g/L leucine. 

Optimization of KIC production by the whole-cell 

biocatalyst 

G 

 pH      



Effect of L-leucine transporters on whole-cell 

biocatalyst activity 

 Carbonyl cyanide-3-chlorophenylhydrazone 

(CCCP) was used to uncouple the agents 

that catalyze electrogenic proton movement, 

in order to reduce ATP generation and inhibit 

livK, livJ, and BrnQ transport efficiency.  

 CCCP increased the biocatalyst activity at 

concentrations below 20 mM, and the 

highest KIC production reached 47.1 g/L with 

400 mM leucine. 



Effect of different L-leucine supply strategies 

on KIC production 

 Batch and interval leucine feeding on 

KIC production were studied in flask. 

  In batch biotransformation KIC 

production reached 50.0 g/L with a 

leucine conversion rate of 96.1% (Fig. A). 

 By the feeding of leucine at 2-h intervals 

(from 0 to 22 h), the KIC titer reached 

69.1 g/L when while the leucine 

bioconversion rate decreased to 50.3% 

(Fig. B).  



Improve the expression of L-AAD with different 

plasmid copy number 

Copy number 

Different plasmid copy numbers 



Improve the expression of L-AAD  

 The effect of different plasmid copy number 

 The cell growth rate increased with the decreased plasmid copy number. 

 p15A (with 10 copy number) reached the highest KIC production 76.5 g/L 

when leucine was added at 2-h intervals (from 0 to 12 h). 



Improve the expression of L-AAD 

Plasmid pACYCDuet-1 pColADuet-1 pCDFDuet-1 pRSFDuet-1 pETDuet-1 

ori p15A ColA CDF RSF pBR322 

Copy number 10 5 20 100 40 

Final OD600 4.75 5.26 2.4 2.14 3.785 

RNA level 1 -9.8 13.98 12.33 12.28 

Production 

(g/L) 

76.47 70.47 59.26 65.27 61.47 

Biocatalyst 

activity 

(mg/g•min) 

22.12 20.62 15.85 19.60 16.88 

Comparison of different ori at RNA level, cell growth and KIC production 

 The effect of different plasmid copy number 

 Higher plasmid copy number do not result in higher RNA level, which means 

that transcription of L-AAD is limited at higher plasmid copy number. 



Improve the expression of L-AAD 

Mutants ΔG 

(kcal/mol) 

wild -4.2 

N2: CGT -3.4 

N4: TCA -4.2 

N5: AGG -4.2 

N6:AGG -5.8 

N9: ATA -2.0 

N10: ATA -4.2 

N11: GGA -3.9 

N4del -5.3 

N5del -4.4 

N3del -2.2 

N7del -6.1 

N8del -2.20 

124.9% 

 N-terminal codon bias and RNA structure 

affected KIC production 

79.7 g/L 

N-Terminal  codons strongly 

related to ribosomal elongation. 

What’ s more, N-terminal codons 

reduced mRNA secondary 

structure at the N terminus. So 

the mutants will change 

translational efficiency. 

The highest KIC production  reached 79.7 g/L 



Improve the expression of L-AAD 

 Synthetic ribosome binding sites were optimized to control protein 

expression 

81.4 g/L 

By evaluating the degenerate RBS 

library and selecting synthetic RBS 

sequences with target ∆Gs to 

improve the L-AAD expression level. 

The highest KIC production  reached 81.4 g/L  



Summary  

 Biotransformation of L-glutamate to α-KG by L-AAD (pm1) from P. mirabilis 
 N-terminus deleted L-AAD:  the conversion rate is 12.6% and α-KG production is 1.5 

g/L. 

 Directed evolution, site-directed mutagenesis & gene shuffling of L-AAD and the 
deletion of product degradation pathway were performed, and the best mutant 
exhibited 67.7% of conversion rate and 58.6 g/L of α-KG in the fed-batch 
biotransformation system. 

 Biotransformation of L-phenylalanine to PPA by L-AAD (pma) from P. mirabilis 
  Under the optimal conditions for 12 h, the  maximal conversion rate and PPA titer 

reached 82.5% and 3.3 g/L, respectively.  
 In 3-L fermentor, the conversion rate can be almost 100%  within 4 h and no substrate 

inhibition was observed within 35 g/L of L-Phe. 

 Biotransformation of L-leucine to α-ketoisocaproate by L-AAD from P. vulgaris 
  On the optimal conditions, the α-ketoisocaproate titer reached 12.7 g/L with a leucine 

conversion rate of 97.8%. 
 The highest KIC production  reached 76.5 g/L, 79.7 g/L, 81.4 g/L with the optimal the 

plasmid copy number, N-codon, RBS sequence, respectively. 



Thanks for your attention! 


