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Moore’ s Law
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The number of transistors per chip doubles every 18 months




Power Density
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Multi-core processors necessary to keep chips from melting




Is Heat Really a Problem?

Every Problem is an opportunity:

Bora Model G220

D Heat Protection: i

Temperature Protection: 44°F
No-Slip Surfaces: Front & Back
Sizing: Fits Most Laptops
Wide-Screen Compatible: Yes

Size (HXWxT): 11.0" x 16.0" x 0.5"
Weight: 13 oz

AV VA VA VAV AV

Price: $24.95
Add to cart Availability: In Stock

front back colors more pictures

Benefits

D> Pays for itself in less than 1 week!

> Basic personal comfort and protection from laptop heat

> Rigid surface provides firm support underneath the laptop
> Made from durable materials that won’t snag or tear

g Fits all laptop computers

1 year warranty

Applications for waste heat:
Home heating, Global warming, etc.




Power in Conventional Logic

Conventional CMOS P = N(aCV?f + Passive Dissipation)
2Epgj;

How to reduce power?

| * Reduce V

- » Reduce C

——c * Reduce f (multi-core)

 Turn off parts of the circuit (a)
» Reduce passive power

(@)




Focus on Active or Passive Power?
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Fundamental limits for
computation?

Is there a fundamental lower limit on energy
dissipation per bit?
I.e. 1s there a minimum amount of heat that
must be generated to compute a bit?




Minimum energy for computation

Maxwell’ s demon (1875) — by first measuring states,
could perform reversible processes to lower entropy

S neasurement causes
K
L . L ruction of information
[ 4] . y
m ¢ 2) per bit (Landauer’ s
© Maxwell’s Demon
Pi | |

Bennett (1982): tull computation can be done without
erasure.

logical reversibility <& physical reversibility

Still somewhat controversial.



The Debate

Exorcist XIV: The wrath of Maxwell’ s demon. Part I: From
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Philosophy of Modern Physics, 36, 375 (2005).
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logical reversibility, Maroney, O. J. E. Studies in History and
Philosophy of Modern Physics, 36, 355 (2005)
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Short, Berry Groisman, Studies in History and Philosophy of
Modern Physics, 38, 58 (2007).



Analysis of erasure process

Helpful to examine and contrast two cases:

« Erasure with a copy
— Reversible logical operation (No Data Destroyed)
— Key feature:
The copy biases the system toward the state it’s in
« Erasure without a copy
— lrreversible logical operation (Data Destroyed)

— Key feature:

The system cannot be biased toward the state it’s in, so
there’s an uncontrolled step




What About State Variables?

 Does the choice of a state variable affect this analysis?

e Isn’t using charge as the state variable the real problem?

* |If we use a different state variable like spin, the problem
goes away, right?




A Little History

Beginning in 2003 Zhirnov, Cavin, and Hutchby from SRC have published
a series of highly influential papers indicting charge as a state variable.

Their conclusions:
N
I\[} . « At least kgT In2 must be
* | i dissipated at each transition
e « This result was generalized to
: : all charge-based devices
e ] F AV
Eb{]/] o This is true for CMOS, but what
Fig. 1. Energy model for limiting device: w = abO.Ut other Charge based
devices?

width of left-hand well (LHW) and right-hand
well (RHW); a = barrier width; E = barrier

energy
V.V. Zhirnov, et al., Proceedings of the IEEE, 91, p. 1934-39, 2003.




What About “Reversible” Computing?

Following Landauer, the idea is to avoid erasure of information.

A key technology in reversible computing is adiabatic charging and
discharging of capacitors: recycle charge rather than throwing it to ground.

1
E, :Ecvz E, <ECV2

The SRC critique: Cavin’ s Demon




Cavin’ s Demon

Assertion 1. Energy must be dissipated to

—L— v make logic transitions.

LT | EeE, )
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Proc. SPIE Vol. 5844, pp. 1, 2005




Cavin’s Demon

Assertion 2: Charging a capacitor requires at least kgT In2 of energy

A A
\ Abrupt charging (u=V ) v 1
7oAV
gm £
+ ) Resulting
3ut Ramp (u— 0) | Intended
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Figure 3: Signal forms for “non-adiabatic” and Figure 4: Due to the presence of thermal
“adiabatic” charging noise, the linear ramp is corrupted

Note I on adiabatic charging: The energy dissipated in RC circuit by adiabatic charging cannot be
smaller than kTIn2




Cavin’s Demon

Note Il on “adiabatic charging”: The total energy costs for “adiabatic charging” must include the
Assertion 3:  energy dissipated by the signal generator and this is much larger than the energy dissipated in RC

circuit by adiabatic charging:

E;‘:"l >> Ead

This is a systems level assertion that depends on the signal generator.
However, signal generators can scale differently than integrated circuits!

Worst case: Signal
generator more easily IC
cooled than and IC!
Less than 200
W/cm?

Signal generator concerns apply equally to the control signals for
every state variable

SRC’ s Conclusion: Charge is dead!
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|s this Conclusion Correct?
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Nature 483, p189,
2012

The Landauer Principle

LETTER

Experimental verification of Landauer’s principle
linking information and thermodynamics

Antoine Bérut!, Artak Arakelyan!, Artyom Petrosyan', Sergio Ciliberto', Raoul Dillenschneider? & Eric Lutz>t

doi:10.1038/nature10872
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The Landauer Principle

The SRC group rejects the Landauer Principle, but can it be tested?

Room temperature operations on a 30 kg T bit of information

>
Q.
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COPYBITTOM o

erase
copy
erase




The Landauer Principle

Room temperature operations on a 73 kgT bit of information

Copy 0 Erase 0

Copy 1 Erase 1

Measured dissipation was 0.005 kgT (15 yJ).




Experimental Summary
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Is There Any Hope?

Yes, but transistors may not be the best way!

It is time to do something different.

Represent binary information by charge configuration!
Quantum-dot Cellular Automata

@ O A cell with 4 dots

O @ 2 eXtrE_‘ electrons Developed in the early 90s by
Tunneling between dots Craig Lent

Polarization P = -1 Wolfgang Porod
Bit value “0” Gary Bernstein




Charge configuration represents
bit




Neutral mixed-valence
zwitterion (self-doped)

Synthesis:
John Christie, Kenneth Henderson

Imaging: _ _ Awitterionic mixed-valent nido-1,2-diferrocenyl-
Alex Kandel, Natalie WaS|O, undecacarborane.

< ebecca Quardokas




Conclusions

Energy recycling can enable power reduction
Charge is a viable state variable

Alternative state variables face the same limits as
charge

There is no fundamental lower limit on the energy
needed for computation — only practical ones

The key is to trade speed for power, a trade-off
that is already being made.

Low energy dissipation key to implantable
applications.



