

Antibiotic resistance: the bigger picture, a holistic viewpoint of outcomes and costs.

tranScrip

Glenn S Tillotson PhD, FIDSA Senior Partner TranScrip Partners LLC

The end of medicine as we know it Jim* ! tranScrip

"

A post-antibiotic era means, in effect, an end to modern medicine as we know it. Things as common as strep throat or a child's scratched knee could once again kill.

Dr Margaret Chan, Director-General, World Health Organization. March 2012²

* For you Trekkies ... Attributed to Gene Roddenberry 1975 app.

- Antibiotic resistance is a global issue and is increasing
- Multi-drug resistant bacteria cause life threatening infections
- Antibiotics cure life-threatening infections.
- Other treatments that are used to treat life threatening conditions can cost upwards of \$30,000 for a months course (e.g. the anticancer treatments Avastin, Folotyn).
- A course of Sovaldi to cure Hepatitis C costs \$84,000 which is frequently justified by the need to maintain innovation in R&D.
- Impact of antibiotics is clear and undisputed yet.....
- Holistic means "upholds that all aspects of people's needs including psychological, physical and social should be taken into account and seen as a whole".

Free life saving drugsin the fresh commodity section

My Advant <i>Edge</i> Sig	n Up Sign In	T T T Locations	Contact Us FAQs Search	► Q
choppe		Westly Flyer Coupons	Advant.Edge:Card Email Swing	5 Fuel AdvantEdge
Fresh Ideas Savings	Health & Wellness Recipes Pharmacy	Shopping List f	ᆇ 🖸 🖗 🗆 🗞	Like 149k
ORDER ONLINE	Shops 4U Prescription Refills Cakes & F	Platters Floral	Photos Gift Cards	Special Orders
Prescription Refills Pharmacy Locations	Pharmacy > Free Antibiotics Free Antibiotics			
Quickcare Clinics Diabetes AdvantEdge	 Simply bring in your prescription for any of the qui limits to the number of prescriptions, and refills and 	alifying medications listed below, e also accepted.	and we'll fill your order at no cost t	to you! There are no
RxAdvantEdge Savings Free Antibiotics	Amoxicillin Cephalexin			
Get Vaccinated	Penicillin Sulfamethoxazole/Trimethoprim DS			
Pet Medications Ask a Pharmacist	Not all dosage strengths and forms may be available in the prescription.	program. Not valid with Medicaid or Me	dicare prescriptions. Only one discount o	can apply per
Drug & Health Information				
Health Station Notice of Privacy Practices	Health & Wellness	<i>Weekly</i> Iyer	My Advant Shopping To & More	Edge ools
About Us Corpo	orate Responsibility News In Our Com	munity Careers T	eammates Locations	Contact Us

© 2014 Price Chopper | Privacy Policy | Security Information

Recent US-based analysis: Societal values = holistic overview.

Eastern Research Group (ERG) tasked by US government to account for ALL costs involved in certain infections *

- Comprehensive model for drugs for 6 key indications (ABOM, ABSSSI, CAP, cIAI, cUTI, HAP-VAP)¹
- Current NPV of the new antibiotic is always < \$40 million
 - All 90% confidence intervals on estimate went below zero
- Value to the patient was MUCH higher
 - Just based on the value of days of work and life restored, the value to society ranged from \$500m to \$12 billion
- Thus, this new holistic evaluation shows
 - Starting antibacterial R&D is not financially rational, at least not with traditional R&D costs and approaches because.....

- We (Society) undervalue these drugs

* Sertkaya A, Eyraud J, Birkenbach A, Franz C, Ackerley N, Overton V, Eastern Research Group. Analytical framework for examining the value of antibacterial products. Report to US DHHS. http://aspe.hhs.gov/sp/reports/2014/antibacterials/rpt_antibacterials.cfm

Methodologic issue, factor Aspects Outcome Mortality In hospital, attributable to infection; in hospital and after discharge, all-cause Morbidity Length of hospitalization, need for ICU care, need for surgery or other procedures, activity level at discharge, and loss of functional status (loss of work) Economic Hospital costs, hospital charges, resource utilization, total health care costs, skilled nursing, and other outpatient costs Outcome perspective Hospital Inpatient morbidity, mortality, and/or costs Inpatient and outpatient health care costs Third-party payer Patient Decreased functional status, loss of work, and fewer antimicrobial agent options Societal Total health care costs of antimicrobial resistance and loss of antimicrobial classes Choice of reference group Patients infected with susceptible strains . . . Uninfected patients . . . Patients colonized with resistant strains . . . Confounding factors Length of hospital stay APACHE score, McCabe/Jackson score, and Charlson comorbidity score^a Underlying severity of illness Comorbid conditions . . .

Table 1. Influences on studies assessing the impact of infection with antimicrobial-resistant bacteria.

NOTE. ICU, intensive care unit. Adapted and reprinted with permission from Cosgrove and Carmeli [2].

^a APACHE is a severity of disease classification system that uses a point score based on initial values of 12 routine physiologic measurements, age, and previous health status. It is a validated tool to predict mortality for patients in the ICU. The McCabe/Jackson score uses a simple 3-category score to predict mortality for patients with bacteremia due to gram-negative organisms. The Charlson comorbidity score is a simple, readily applicable, and valid method of estimating risk of death from comorbid disease.

Cosgrove S CID 2008

ReACT information on the impact of antibiotic resistance

Bacteria	Death rate <i>resistant</i> strain	Death rate <i>sensitive</i> strain
E. coli ²³	32%	17%
A. baumannii ²⁵	16.4%	5.4%
A. baumannii ¹⁹	53.8%	31.0%*
K. pneumoniae ²⁶	42.9% (CRKP)	18.9%
K. pneumoniae ²⁷	43.8% (CRKP)	12.5%
K. pneumoniae ¹⁰	38%	12%
S. aureus ²⁸	36.4% (MRSA)	27.0%
S. aureus ¹⁴	23.6% (MRSA)	11.5%

Table 2: Comparison of death rates (mortality) in patients with resistant or sensitive strains of bacteria. *=not fully sensitive.

Table 15: Social EPV Model Parameters and Assumptions (Point Estimates)

Model Parameter/Assumption	ABOM	ABSSSI	CABP	CIAI	CUTI	HABP/VABP
Real Annual Social Rate of Discount	3%					
% of Patients Not Responding to Existing Drugs			20)%		
% Increase in Duration in Patients Not Responding to Existing Drugs			50)%		
Loss in Quality of Life, Acute	0.11	0.36	0.15	0.5	0.27	0.17
Duration (days)	10	6	4	10	4	8.5
Loss in Quality of Life, Convalescence	0.04	0.36	0.1	0.15	N/A	N/A
Duration (days)	20	18	5	12	N/A	N/A
Lost QALYs per illness	0.0049	0.0239	0.0038	0.0023	0.0030	0.0040
Total Number of Cases per Year (unadjusted for population growth)	13,200,000	726,000	1,170,000	72,000	1,083,000	272,600
Mortality Parameters						
Deaths	0	1,923	51,683	14,554	36,900	81,779
Lost QALYs for Patients that Die	0	26,167	572,741	243,987	319,913	1,848,212
VSL per Patient	N/A	\$5,623,708	\$5,301,924	\$5,585,504	\$4,953,688	\$4,770,000
Morbidity Parameters						
Number of Patients that Survive	13,200,000	724,397	1,118,000	57,489	1,045,986	190,818
Lost QALYs for Patients that Survive	65,248	17,336	4,295	1,632	2,432	756
WTP (VSLY*Lost QALYs) per patient	\$1,124	\$8,749	\$1,113	\$12,717	\$758	\$1,149

N/A = Not applicable

QALY = Quality-adjusted-life-year

VSL = Value of a statistical life

VSLY = Value of a statistical life year

WTP = Willingness-to-pay

The figures in the table are rounded for presentation purposes.

* Sertkaya A, Eyraud J, Birkenbach A, Franz C, Ackerley N, Overton V, Eastern Research Group. Analytical framework for examining the value of antibacterial products. Report to US DHHS. http://aspe.hhs.gov/sp/reports/2014/antibacterials/rpt_antibacterials.cfm

Table 16: Reported Estimates of Antimicrobial Resistance

Source	% of Patients Resistant to Commonly Used Antibacterial Drugs
Evans, et al., 2007 [a]	23.0%
Roberts, et al., 2009 [b]	13.5%
ECDC/EMEA Joint Technical Report, 2009 [c]	
Methicillin-resistant S. aureus (MRSA)	25.0%
Vancomycin-resistant Enterococcus faecium	8.0%
Penicillin-resistant S. pneumonia	4.0%
Third-generation cephalosporin-resistant E. coli	9.0%
Third-generation cephalosporin-resistant K. pneumoniae	20.0%
Carbapenem-resistant P. aeruginosa	19.0%
Expert 1	
Inpatient	30.0%
Outpatient	10.0% - 15.0%
Expert 2	20.0% - 25.0%

[a] Based on a sample of 604 surgical admissions treated for at least one Gram-negative rod (GNR) infection [b] Based on a sample of 1,391 patients in a Chicago area hospital

[c] Based on European Antimicrobial Resistance Surveillance System (EARSS) for EU Member States, Iceland and Norway for each year during the period 2002–2007

[•] Sertkaya A, Eyraud J, Birkenbach A, Franz C, Ackerley N, Overton V, Eastern Research Group. Analytical framework for examining

[•] the value of antibacterial products. Report to US DHHS. http://aspe.hhs.gov/sp/reports/2014/antibacterials/rpt_antibacterials.cfm

MRSA- costs and facts

- In USA costs >\$560 million to third party payers.
- Lost productivity amounts to \$>2.7 BILLION.
- Direct costs for CA MRSA are around 25% of total costs.

Disease	Est costs per case (\$)
CA MRSA	7,070-20,489
Influenza	3,000-4,000
Foodborne illness	1,851
Pertussis	1,952
Lyme disease	397-923

Lee BY, Singh A, David M et al Clin Micro Inf 2013,19: 528-536.

ESBL Infections Are Associated With Higher Mean Hospital Costs (US)

 Systematic literature review of 8 studies on the costs of ESBL-producing Enterobacteriaceae

P value for difference in cost between ESBL+ vs ESBL- infections.

ESBL, extended-spectrum β-lactamase; MDR, multidrug resistance; UTI, urinary tract infections. Tansarli et al. *Expert Rev Anti Infect Ther.* 2013;11:321-31.

Multidrug-resistant (MDR) *Pseudomonas aeruginosa* Is Associated With Increased Morbidity and Mortality

Retrospective study at Tel-Aviv Sourasky Medical Center, Israel; 82 patients with MDR P. aeruginosa and 82 controls. More severe outcomes with MDR P. aeruginosa.

Aloush et al. Antimicrob Agents Chemother. 2006;50:43-6.

Length of Stay* Increases With Drug Resistance

P < 0.001 for meropenem resistant *P. aeruginosa* vs other comparators.

LOS, length of stay.

Eagye et al. Infect Control Hosp Epidemiol. 2009;30:746-52. * also drives increased costs to relatives.

Impact of resistance on Acinetobacter baumannii (ACB) infections.

- Timeline: 2009-Q3/2013.
- Locations: 152 US hospitals
- Confirmed ACB infections.
- 376 MDR ACB in primary pneumonia
- 1,869 MDR ACB in primary sepsis.

Parameter	Pneumonia		Sepsis	
	MDR ACB	Non MDR ACB	MDR ACB	Non MDR ACB
Length of hospital stay (days)	13.4	10.5	16.2	14.8
ICU stay required %	46.6	22.6	62.8	46.8
Mortality %	15.3	5.9	21.7	16.9
Hospital costs \$	32,086	24,367	43,997	38,494

LaPensee K et al IDWeek 2014 Abstract 338

Private & Confidential

Clinical Outcomes of *P.aeruginosa* **Pneumonia in ICU Patients**

- Retrospective analysis of 110 ICU patients with culture-confirmed *P. aeruginosa* pneumonia in Italy
 - Approx. 80% isolates were drug resistant
 - 38% multidrug resistant (MDR)
 - Overall ICU mortality = 44.5%
 - MDR *P. aeruginosa* ICU mortality = 59.5%
- In logistic regression, inadequate initial antibiotic therapy (IIAT), diabetes mellitus, elevated Simplified Acute Physiology Score II, and older age were independently associated with ICU mortality
- MDR in the *P. aeruginosa* isolate can significantly increase the need for mechanical ventilation

MDR *P. aeruginosa* Non-MDR *P. aeruginosa*

The value of new antibiotics is clear.

- Obvious clinical need
- Global healthcare mandate for new drugs is vital
- Net Present Value is unambiguous
- MDR infections are clearly "bad news"
 - More deaths, so the value of a life is obvious
 - Longer hospital or Unit stay
 - Lost productivity of patient and many family members
 - Efficacy of new antibiotics is undisputed
 - Impact of inappropriate or/and generic drugs is clear and not debated.

Value of a Statistical Life (VSL)

- To calculate VSL, we first took the value of a statistical life reported in 2000 dollars by age group from Aldy & Viscusi (2008).
- Next, it was necessary to adjust the VSL values by age group to capture changes in real income as well as prices from 2000 to 2011.
- Current data from the U.S. Bureau of Economic Analysis (BEA) show that the real personal income per capita was \$28,888 in the year 2000 and \$32,635 in 2012 (both in 2005 dollars), yielding a growth rate of 13 percent over this span of time.
- Hammitt & Robinson (2011) report that U.S. regulatory agencies generally assume that a 1.0 percent change in real income over time will result in a 40 to 60 percent change in the VSL.
- Using the midpoint of this range (50 percent), we inflated the reported VSL values by age group by 1.065 (= 1 + [0.5 × 0.13]) to account for changes in real income from 2000 to 2011.
- To adjust the VSL values for price changes, we used the general consumer price index-based inflation calculator (available on the Bureau of Labor Statistics website) that shows an average price increase of approximately 31 percent over the same time period.
- We then calculated the age-specific VSLY and apply it to the estimated number of years of life lost for each condition

Private & Confidential

Antibacterials: the big mismatch 2014 !!

Industry returns for a new antibiotic per indication (Figures in \$ Millions)

Indication	Private Value (in \$ Million)					
indication	90% Lower Bound	Mean	90% Upper Bound			
ABOM	-\$18.8	-\$2.7	\$215.1			
ABSSSI	-\$15.8	\$27.1	\$198.9			
CABP	-\$17.6	\$37.4	\$330.0			
CIAI	-\$18.0	\$8.9	\$222.5			
CUTI	-\$16.3	\$21.9	\$213.0			
HABP/VABP	- \$23.5	-\$4.5	\$126.7			
		-\$4.5	-			

Sertkaya A, Outterson K, et al. "Analytical Framework for Examining the Value of Antibacterial Products"

http://aspe.hhs.gov/sp/reports/2014/antibacterials/rpt_antibacterials.cfm

Social returns for a new antibiotic per indication (Figures in \$ Millions)

	Social Value					
Indication	Min	Mean	Max			
ABOM	\$48	\$486.6	\$5,363			
ABSSSI	\$58	\$584.2	\$6,133			
CABP	\$706	\$9,375.3	\$72,494			
CIAI	\$114	\$1,069.2	\$10,231			
CUTI \$674		\$6,064.6	\$54,795			
HABP/VABP \$1,068		\$12,165.6	\$161,335			

Sertkaya A, Outterson K, et al. "Analytical Framework for Examining the Value of Antibacterial Products"

http://aspe.hhs.gov/sp/reports/2014/antibacterials/rpt_antibacterials.cfm

The Bacterial Challenge in Europe: Time to React

- Estimates in 2007 show that together, third-generation cephalosporin-resistant Escherichia coli, third-generation cephalosporin-resistant Klebsiella pneumoniae, and carbapenem-resistant Pseudomonas aeruginosa, were responsible for:
 - 193,300 cases of infection
 - 18,200 excess deaths
 - 1,375,0000 extra hospital days
 - With *P. aeruginosa* accounting for 141,900 infections, 10,200 deaths, and 809,000 extra hospital days
 - €503,100,000 extra in-hospital costs
 - €4,500,000 extra outpatient costs
 - €59,300,000 productivity losses due to absence from work
 - €300,300,000 productivity losses due to patients who died from their infection

"It is likely that the human and economic burden caused by antibiotic resistant Gram-negative bacteria...represents a major challenge to appropriate therapy, prevention and control in the foreseeable future."

ECDC/EMEA Joint Technical Report 2009: The bacterial challenge: time to react. http://www.ecdc.europa.eu/en/publications/Publications/0909_TER_The_Bacterial_Challenge_Time_to_React.pdf.

So to the bigger picture

- So how do antibiotics compare in "value" with other therapeutics?
- Bearing in mind the usual number of MDR infections which have a significant impact on management costs and Societal dues.

Comparison of Estimated number of Orphan Disease subjects/country

Drugs	Disease area	Prevalen ce /100,000	Est # patients France	Germany	Italy	Spain	UK
Esbriet	IPF	17	11,220	13,770	10,200	7,820	10,880
Exjade	Fe overload	27	27,820	21,870	16,200	12,420	17,280
Gilenya	MS	60-90	49,500 (mid)	60,750	45,000	34,500	48,000
Kuvan	PKU	50	33,000	40,500	30,000	23,000	32,000
Signifor	Cushings	1-9	3,300 (mid)	4,050	3,000	2,300	3,200
Tracleer	PAH	1-9	3,300	4,050	3,000	2,300	3,200
	BSI*		34,000	30,058	44,888	38,625	29,346
	HAP*		67,139	99,192	61,366	40,673	54,951
	UTI*		99,574	180,348	44,888	38,625	29,346

* These are total estimates for the 3 infections, the actual incidence of MDR infections is less but probably <15% overall. <u>NB most are <200K in incidence</u> Sources- MIMS, orphanet, PR Newswire & Datamonitor.

Comparison of Orphan Drug Annual Costs (ex=manufacturer)

Drugs	Disease area	Prevalence /100,000	Year EMA approved	Unmet need	France Euros	Germany Euros	UK Pounds
Esbriet	IPF	17	2011	Μ	24,600	29,300	25,700
Exjade	Fe overload	27	2006	M/H	35,000	38,200	24,500
Gilenya	MS	60-90	2011	Μ	22,700	17,000	19,200
Kuvan	PKU	50	2008	н	76,500	69,000	70,900
Signifor	Cushings	1-9	2012	Н	15,300	12,700	13,100
Tracleer	PAH	1-9	2022	M/H	25,800	32,400	19,700
Zavesca	Gauchers	1-9	2022	M/H	85,700	91,000	51,300

Orphan disease = A rare disease or disorder is defined in the U.S. as **one affecting fewer than 200,000 Americans**.

Sources- MIMS, orphanet, PR Newswire & Datamonitor.

- According to calculations a 1% reduction in the usefulness of existing antibiotics could impose costs of \$600billion to \$3trillion in lost human health!!
- WEF 2013- reported a negative impact of 0.4-1.6% on GDP by nation.

On top of destabilizing our health systems, there are profound cost implications for economic systems and for the stability of social systems. The annual cost to the US health care system of antibiotic-resistant infections is already estimated at between US\$ 21 billion to US\$ 34 billion.¹¹ Elsewhere, losses to GDP have already been estimated at 0.4% to 1.6%.¹² The consequences of

Justum pretium

- Justum pretium = just price or "fair value"
- By moral necessity "price must reflect worth"
- If a new antibiotic is more efficacious than current vs MDR pathogens then it should be priced to give "good or fair value".
- The overall Societal costs of antibiotic resistance is <u>massive and</u> <u>unrecognized.</u>
- Not suggesting all new antibiotics be "orphan priced" but.....
- Current regulatory approaches could better reflect orphan methods to normalize the field.
- The "market" by MDR infection is too small to provide an adequate ROI..... Thus our valuation and perception must shift if we are to encourage pharma to continue to develop new antibiotics..

THERE IS ALWAYS SOMEONE

... WHO WILL DO IT CHEAPER!