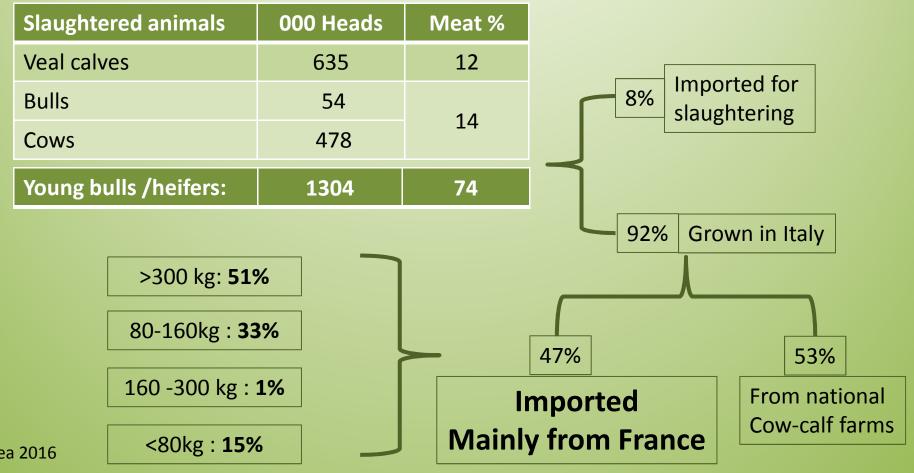


Università degli Studi di Padova

DEPARTMENT OF ANIMAL MEDICINE, PRODUCTION AND HEALTH

5th Animal Health and Veterinary Medicine Congress

September 26-27, 2016 Valencia, Spain


RUMINATION AND ACTIVITY DATA DURING THE CONDITIONING PERIOD OF BEEF CATTLE

Giorgio Marchesini, Davide Mottaran, Eliana Schiavon, Severino Segato, Elisabetta Garbin, Massimo Mirisola, Igino Andrighetto

CHARACTERISTICS OF BEEF FARMING IN ITALY

Italy is the fourth main producer of bovine meat in EU-**28**, following France, Germany and UK

✓ The Italian self-supply of bovine meat is only 53%

Ismea 2016

YOUNG BULLS/HEIFERS FARMING CHARACTERISTICS IN ITALY

	Intensive fa	Extensive farming	
	Light beef	Heavy beef	
Live weight, kg	450 - 500	600 - 650	650
Age, months	14-16	16-20	16-24
Bovine meat, %	12	46	16
Breeds	Dairy crosses, French breeds (females)	French breeds and crosses	Italian breeds (Chianina, etc.)
Feeds	Maize silage, concentrates	Maize silage, concentrates	Pasture and concentrates
Daily growth, kg	0.9-1.3	1.3-1.5	1.4 - 1.8

Production in Veneto

- 23% bovine meat
- 8% of beef farms
- Highly specialised farms
- Animals imported from France
- High daily growth (1.5 kg/day) 3. Fattening (High starch)

Farming phases

- 1. Conditioning (40 50 days)
- 2. Growing (moderate/high) starch and high protein)

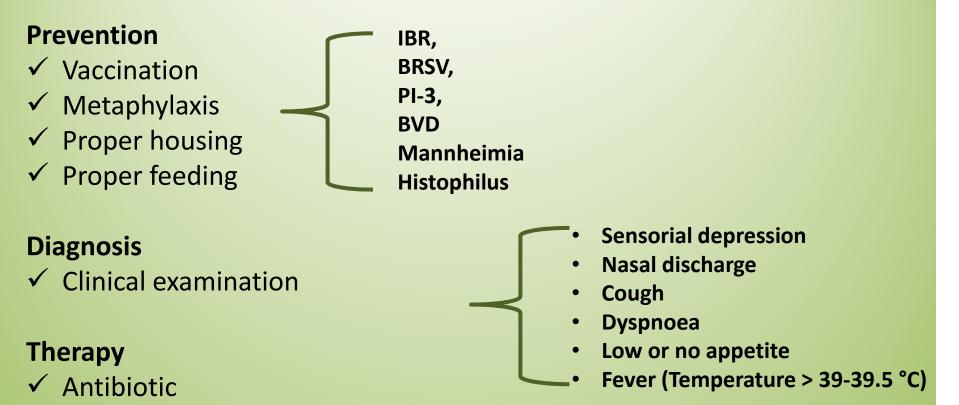
BOVINE RESPIRATORY DISEASE (BRD): A CRITICAL ISSUE

Predisposing factors

(Webster, 2011)

- Season (late autumn–early winter)
- ✓ Overcrowding
- Poor sanitation
- Inadequate ventilation
- ✓ Fluctuating temperatures
- ✓ Inadequate nutrition
- ✓ Transport
- ✓ Etc.

BRD


- Major cause of morbidity and mortality
- ✓ The most expensive disease in beef cattle
- ✓ Prevalence: 10 20%
- Causal agents: (viruses, bacteria and mycoplasmas)

Stressors during conditioning period

- ✓ Extended transport (truck)
- ✓ Radical change of housing
- ✓ Change of feeding
- ✓ Hierarchical competition
- ✓ Viruses and bacteria in new environment

✓ Etc.

BRD: PREVENTION DIAGNOSIS AND THERAPY

✓ Anti-inflammatory drug

Early diagnosis allows an immediate therapeutic intervention and minimizes the severity of the disease and the long-term health consequences

AIMS

- Acquire data on beef cattle activity and rumination
- Assess whether or not data provide a reliable prediction of weight gain
- Verify whether or not collected data help in the early detection of diseases (in particular BRD).

MATERIAL AND METHODS: ANIMALS AND HOUSING

Animals

✓ Breed: Charolais
✓ N°: 108 bulls coming from France
✓ Age: 390±49 days
✓ Live weight: 453±21 kg

Farm

- ✓ **Location:** Veneto (RO), Italy
- ✓ Extension: 800Ha,
- ✓ N° animals/year: 6000

Housing

- ✓ Animals were located in a roofed stable and grouped in 11 pens
- ✓ The pens were (14 x 5 m) and had straw bedding
- Continous water availability

MATERIAL AND METHODS: EXPERIMENTAL DESIGN

Duration of the trial: 70 days

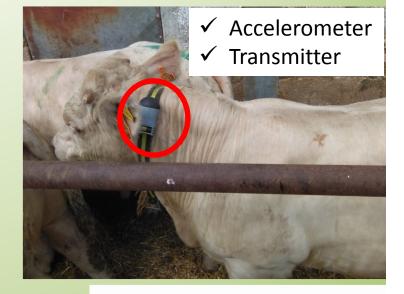
Actions on the animals the day after arrival

- ✓ Grouping
- ✓ Weighing
- Clinical examination
- ✓ SCR collars fitting
- ✓ Vaccination
- ✓ Metaphylaxis

Daily activities throughout the trial

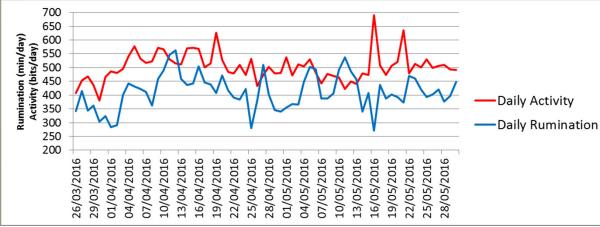
- Animals were checked twice daily to verify their health condition and the right position of collars
- ✓ Any symptoms and therapies have been regularly recorded.
- Data on rumination and activity were recorded by collars every 2 hours and then summarized as values of total daily rumination and activity

Actions at the end of the trial


- Weighing (to determine weight increment)
- Clinical examination
- Removing of the collars
- Translocation of the animals to another stable

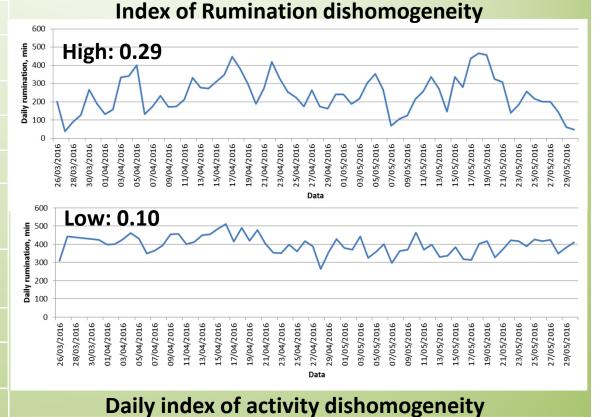
MATERIAL AND METHODS: TECHNOLOGY USED

Heatime® Pro System /HRLDn Tag (SCR Engineers Ltd)


Functions

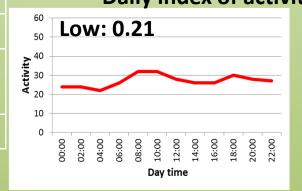
- Animal identification
- Real-time individual neck activity level (0–253 bits/2h)
- Real-time individual ruminating time
- All data were transferred automatically to the herd management software

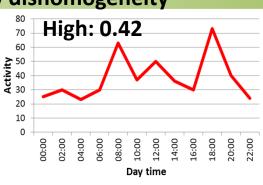
(DataFlow2, SCR Engineers Ltd ., Netanya, Israel).



MATERIAL AND METHODS:

ACTIVITY AND RUMINATION PARAMETERS

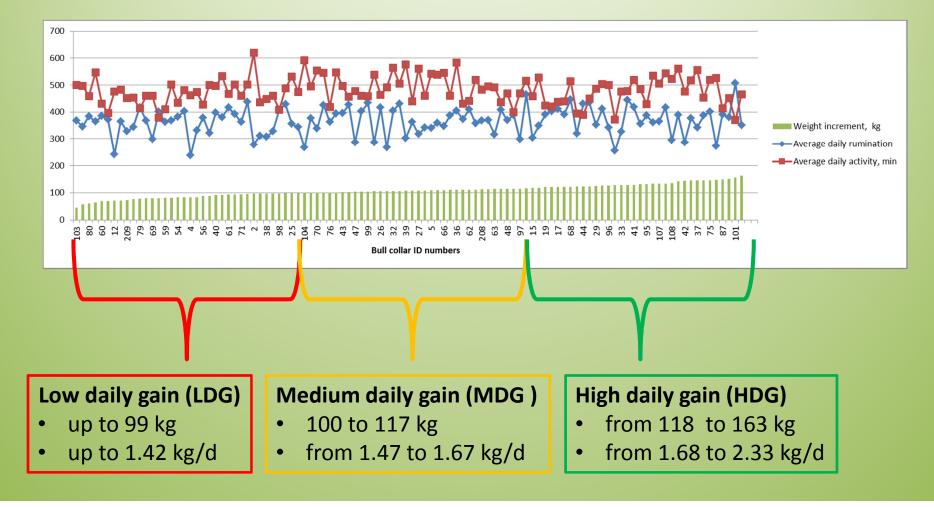

Rumination


- Average daily rumination, min
- ✓ Minimum Daily Rumination, min
- Rumination Range, min
- Daily index of rumination dishomogeneity
- Index of Rumination dishomogeneity

Activity

- Average daily activity
- Minimum daily activity
- Daily index of activity dishomogeneity
- Index of Activity dishomogeneity

MATERIAL AND METHODS: RATIONS

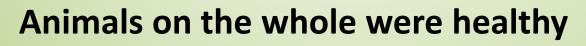

At the arrival animals were fed a ration based on hay and maize silage for 3 days

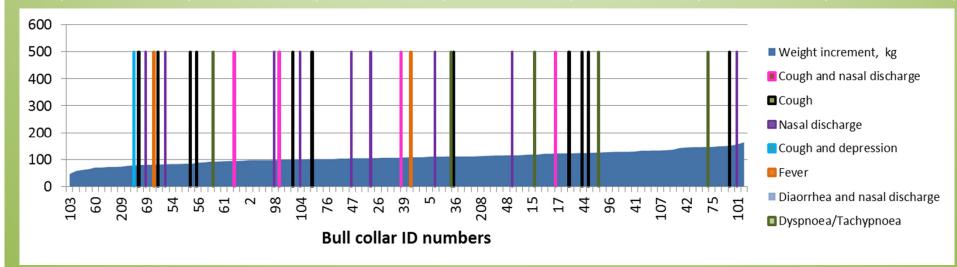
Average composition of the rations:	1° month	2° month	
	Kg WW	Kg WW	
Hay	0.60	0.00	
Wheat bran	1.50	1.50	
Straw	0.65	0.80	
Vitamine and mineral mix	0.61	0.72	
Protein and energy concentrate	1.25	0.00	
Maize silage	6.20	5.00	
Maize meal	1.14	2.60	
Pressed beet pulp	3.4	5.00	
Soybean meal	0.55	0.56	
Total	15.9	16.2	
Crude protein, %DM	14.9	13.7	
NDF, %DM	37.0	35.0	
Starch, %DM	25	30	

MATERIALS AND METHODS:

GROUPING IN ADG CATEGORIES

For statistical analysis animals were grouped in three groups of the same size, according to three catgories of ADG / Weight increment

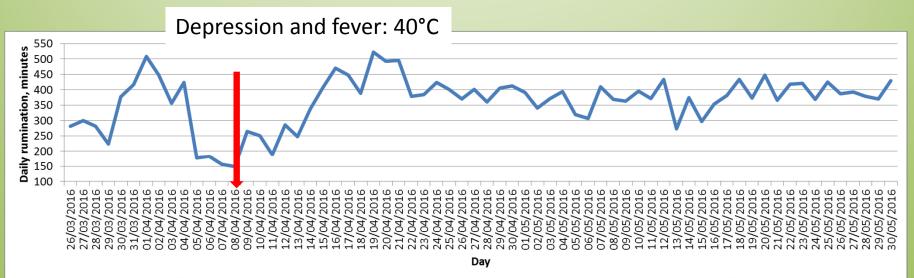

STATISTICAL ANALYSIS


- Data on activity and rumination were checked for normality using PROC UNIVARIATE and Shapiro–Wilk test.
- Perason's correlation coefficients were calculated between average daily growth (ADG) and variables of activity and rumination.
- Furthermore data of activity and rumination were submitted to one-way ANOVA according to the fixed effect of ADG (3 levels: low, LWG, medium, MWG, and high, HWG).
- LSMeans of the ADG effect were separated using the probability of difference (PDIFF) option along with a Bonferroni adjustment for multiple comparisons.
- As regard as the effect of diseases on activity and rumination, data belonging to healthy condition and data concerning disease were subjected to a PROC MIXED, with time effect (Pre-disease vs. disease) and the animal as a random effect
- All of the statistical analyses were conducted using SAS software (2010, release 9.3; SAS Institute Inc., Cary, NC, USA).

RESULTS AND DISCUSSION: HEALTH STATUS

- Collars were found displaced on 36 bulls at least once for a total of 55 episodes
- 13 bulls lost their collars at least once for a total of 20 times
- Data corresponding to episodes of displaced or lost collars were not taken into account for data analysis

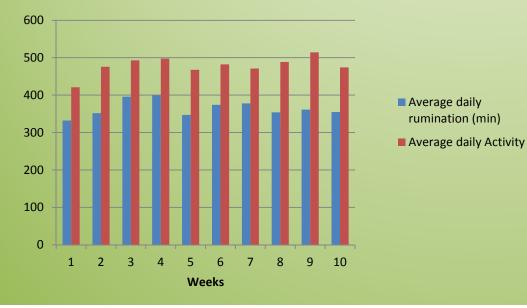
Sensorial Nasal Diaorrhea Cough **Fever Dyspnoea** discharge depression N° animal 16 14 2 1 2 6 Animal % 14.8 13.0 1.85 0.92 1.85 5.55



RESULTS AND DISCUSSION: DISEASE PREDICTION

✓ Animals with nasal discharge showed an increase in daily Activity

	Healthy	Nasal discharge	SEM	Р
Average daily activity, bits/day	422	446	27.7	0.088


✓ Fever leads to a reduction in daily rumination

 Drop in rumination is probably consequent to a drop in feeding caused by the disease before the onset of visible clinical signs

RESULTS AND DISCUSSION: ACTIVITY AND RUMINATION

	Average	SD	Max	Min
Initial body weight, kg	453	21.4	514	398
Final body weight, kg	561	31.0	620	475
Daily weight gain, kg	1.56	0.34	2.33	0.68
Average daily rumination, minutes	367	50.8	506	238
Max daily rumination, minutes	510	56.7	672	355
Min daily rumination, minutes	170	82.2	360	12
Average daily activity, (bits)	481	50.6	619	369
Max daily activity, (bits)	677	130	1033	442
Min daily activity, (bits)	347	44.9	463	243

 In the first week bulls should adapt to new conditions

- They began to eat and ruminate more
- In the 5° week the fiber in the ration was reduced

RESULTS AND DISCUSSION: EFFECTS ON ADG

Wake but significant correlations (Pearson correlation coefficient) with ADG were found for:

✓ Minimum daily rumination, r : 0.25 (P=0.009)

✓ Rumen dishomogeneity index, r: -0.25 (P=0.008)

	LDG	MDG	HDG	SEM	Р
Rumination					
Minimum Daily Rumination, min	142b	170ab	197a	13.2	0.0184
Rumination Range, min	366a	336ab	315b	14.0	0.045
Rumination dishomogeneity index	0.184a	0.171ab	0.157b	0.006	0.0137
Activity					
Average daily activity	470	498	474	8.29	0.0421
Daily index of activity dishomogeneity	0.314b	0.353a	0.325b	0.0073	0.0009

Average daily growth is significantly affected by

- Dramatic drop in rumination
- ✓ Great variation in rumination throughout the farming period
- ✓ Variation in activity

CONCLUSIONS

- Patterns of rumination and activity in beef cattle show big variations among individuals and throughout the conditioning period.
- Rumination pattern is affected by feed intake, fiber content and fiber quality and its drop below certain levels seems to affect ADG and may indicate fever at an early stage
- Activity level is related to feeding time, but also to hierarchical competition, stress and the presence of some symptoms but its meaning is sometimes hard to determine
- Patterns of activity and rumination promise to be useful in both daily growth forecasting and in detection of diseases, although further research is needed

AKNOWLEDGMENT

 The authors thank the Azienda Agricola Faccia and SCR Engineers Ltd for the logistical and technological support

REFERENCES

- Duff GC and Galyean ML 2007. Board-Invited Review: Recent advances in management of highly stressed, newly received feedlot cattle. J. Anim. Sci. 2007. 85:823–840
- Gay E., Barnouin J., 2009. A nation-wide epidemiological study of acute bovine respiratory disease in France. *Preventive Veterinary Medicine* **89**(3-4): 265-271.
- Goldhawk C., Schwartzkopf-Genswein K., and Beauchemin K. A. 2013. Technical Note: Validation of rumination collars for beef cattle J. Anim. Sci. 91:2858–2862
- Schirmann K, Chapinal N, Weary DM, Heuwieser W, von Keyserlingk MA. 2012. Rumination and its relationship to feeding and lying behavior in Holstein dairy cows. J Dairy Sci. 95(6):3212-7. doi: 10.3168/jds.2011-4741.
- Schirmann K, von Keyserlingk MAG, Weary DM, Veira DM, Heuwieser W., 2009. Technical note: Validation of a system for monitoring rumination in dairy cows. J. Dairy Sci. 92 :6052–6055.
- Sowell, B. F., J. G. P. Bowman, M. E. Branine, and M. E. Hubbert. 1998. Radio frequency technology to measure feeding behaviour and health of feedlot steers. Appl. Anim. Behav. Sci. 59:277–284.
- Webster J. 2011. Management and welfare of farm animals. Wiley-Blackwell, UK