

Antifertility activity of *Bambusa* vulgaris aqueous methanolic leaf extract in male wistar rats.

Alade, Gideon Oyewole

DEPARTMENT OF PHARMACOGNOSY & HERBAL MEDICINE, NIGER DELTA UNIVERSITY, WILBERFORCE ISLAND, NIGERIA

October 28th, 2015

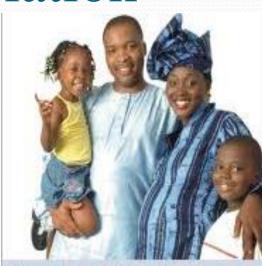
Antifertility activity of *Bambusa vulgaris* var. *vulgaris* aqueous methanolic leaf extract in male wistar rats.

Gideon O. Alade^{1*}, Tolulope O. Alade², Olanrewaju R. Omobuwajo¹, Jones O. Moody³

- ¹Department of Pharmacognosy & Herbal Medicine, Faculty of Pharmacy, Niger Delta University, Wilberforce Island, Nigeria
 - ² Department of Medical Laboratory Sciences, Faculty of Basic Medical Sciences Niger Delta University, Wilberforce Island, Nigeria
- ³ Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria

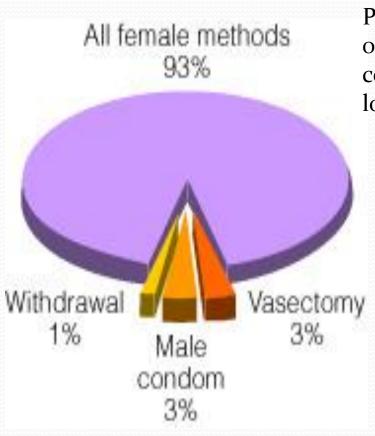
Oct 26-28, 2015 Hyderabad, India

Introduction


- Antifertility (Fertility regulation) has to do with prevention of pregnancy
- By natural means
- - By artificial means

Advantages of fertility regulation

reduces maternal mortality rate


- helps prevent unwanted pregnancy
- helps control human population growth.

Pharmacognosy, Phytochemistry 8 Natural Products

Oct 26-28, 2015 Hyderabad, India

Use of existing male contraceptives

Participation of male counterpart is low

All female methods 73%

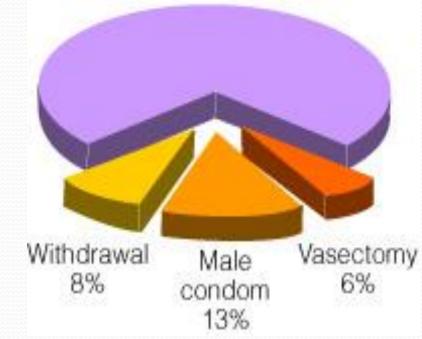


Fig. 1: Existing contraceptive use in Developing countries

Fig. 2.Existing contraceptive use in Developed countries

Reasons for low participation of Men

- - lack of Family Planning (FP) information for men
- limitedness of FP service for men

socio-economic and cultural background which considers FP

as women's affairs

- limited kinds of contraception for men

Background to study

• Ethnobotanical study of antifertility medicinal plants used by the people of Kathijavadi village in India revealed that the extract of *B. vulgaris* leaves is taken orally to reduce sperm count (Sathiyaraj *et al.*, 2012).

OMICS* International

Bambusa vulgaris L. (Poaceae)

Common name: Bamboo

Habit: Tree

Habitat:Tropical

and Sub-tropical areas

Local name: Oparun (Yoruba

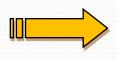
Iko (Bini), Atosin (Igbo)

Ethnomedicinal uses:

emmenagogue, abortifacient,

Gonorrhoea

- Chemical constituents: (none) Flavonoids present in
- A related sp. (Bambusa pervariabilis)



Pharmacology

- Abortifacient potentials of the leaf extract has been scientifically validated; revealing that 250 and 500 mg/kg dose produced abortion at the rate of 60 and 100 % respectively (Yakubu and Bukoye, 2009)
- Antidiabetic activity of the leaf (Senthilkumar et al.,2011).
- Toxicity and microscopy of leaf in male rats (Alade *et al.*, 2015)

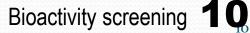
Plant Collection and extraction

Plant Identification and **Collection**

Herbarium specimen/ Authentication

Drying (40 °C)

Extraction (50 % aqueous ethanol)



Concentration (40 °C) 31/10/2015

3rd International Conference and Exhibition on Pharmacognosy, Phytochemistry & Natural Products

Oct 26-28, 2015 Hyderabad, India

In vivo assay in male rats

Distilled water: negative control
Test extracts at different doses, orally daily
for 15 days (Ekaluo *et al.*, 2011)
Sacrificed, testis, epididymis removed, serum
taken (Ofusori, 2007)

Serum centifuged for hormonal assay

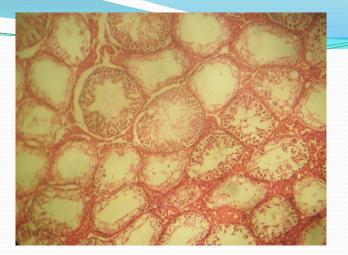
Testis weighed, epididymis put in normal saline and marcerated with a scissors

Sperm count and motility using microscopy

11

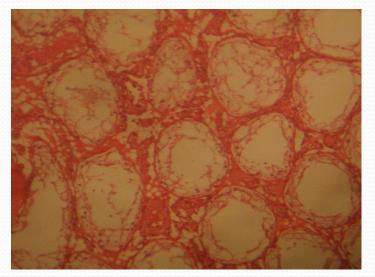
Parameters	mbusa yulgari	s var. <i>vulgaris</i> a	queous methano	lic leaf extract	on		
Spermatozo	a parameters i	in male Wistar r	ats				
•	•		14 DAYS	28 DAYS	28 DAYS		
Dose (mg/kg)	0	250	500	250	500		
Sperm count							
(X10 ⁶ /mL)	22340 ± 1276	12900 ± 1394*a	$8900 \pm 486*a,b$	$15000 \pm 790*a$	$9400 \pm 70^{*a,b}$		
		(42 %) ^x	(60 %) ^x	(31 %) ^x	(60 %) ^x		
% Motility	65 ± 8.2	58 ± 8.5	$51 \pm 4.5*a$	57 ± 2.7	$47 \pm 2.3*^{a}$		
% Active							
spermatozoa	25 ± 4.1	$20 \pm 4.1*a$	$13 \pm 2.9*ab$	$20 \pm 3.5*a$	$10 \pm 2.5^{*ab}$		
% Sluggish							
spermatozoa	40 ± 3.5	38 ± 5.8	38 ± 2.2	40 ± 3.5	37 ± 2.7		
% Dead spermatozoa							
(spermicidal action)	35 ± 6.5	42 ± 7.7	49 ± 2.6*a	43 ± 5.7	$47 \pm 5.7*^{a}$		
Liveability	1.9 ± 0.02	1.4 ± 0.02*a	1.00 ± 0.01 *a b	1.3 ± 0.02*a	1.00± 0.13*a b		
% Normal							
_	70 ± 7.9	67 ± 4.1	70 ± 7.9	67 ± 4.1	70 ± 7.9		
% Abnormal							
spermatozoa	30 ± 7.1	33 ± 4.5	30 ± 7.1	33 ± 4.5	30 ± 7.1		
8 (8/	2.3 ± 0.1	2.4 ± 0.2	2.7 ± 0.8	2.7 ± 0.5	2.5 ± 0.1		
Testes / Body weight							
ratio	1.00 ± 0.1	0.92 ± 0.1	0.98 ± 0.1	1.03 ± 0.2	0.89 ± 0.2		
Number of rats used 6 ± SD							
*a Test carrying superscripts different from the control for each parameter are significantly different (p<0.05)							
*b Test carrying superscripts different from the 250 mg/kg for each parameter are significantly different (p<0.05)							


[^]b Test carrying superscripts different from the 250 mg/kg for each parameter are significantly different (p<0.05)


x percentage reduction in sperm count relative to control (o mg/kg)

Activity of *Bambusa vulgaris* var. *vulgaris* aqueous methanolic leaf extract on Spermatozoa parameters 14 days after withdrawal of extract in male Wistar rats

Parameters	0 mg/kg	250 mg/kg	500 mg/kg
Sperm count (X106/mL)	22340 ± 1276	22900 ± 1000	22130 ± 1310
% Motility	65 ± 8.2	64 ± 9.7	64 ± 8.2
% Active spermatozoa	25 ± 4.1	23 ± 9.1	24 ± 4.1
% Sluggish spermatozoa	40 ± 3.5	41 ± 7.0	37 ± 3.5
% Dead spermatozoa			
(spermicidal action)	35 ± 6.5	35 ± 6.5	35 ± 6.5
Liveability	1.9 ± 0.02	1.9 ± 0.07	1.9 ± 0.02
% Normal spermatozoa	70 ± 7.9	70 ± 8.1	68 ± 7.9
% Abnormal spermatozoa	30 ± 7.1	31 ± 13.1	27 ± 7.1
Weight of testes (g)	2.3 ± 0.1	2.3 ± 0.1	2.3 ± 0.1
Testes / Body weight ratio	1.00 ± 0.1	1.00 ± 0.1	1.00 ± 0.1


Oct 26-28, 2015 Hyderabad, India

o mg/kg

250 mg/kg

500 mg/kg

Photomicrographs of Rat testes after 14 days of Bambusa vulgaris administration x100

Effect of *Bambusa vulgaris* var. *vulgaris* aqueous methanolic leaf extract on Some reproductive hormone in male Wistar rats

	<u> </u>	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			
		14 days treatment		28 days treatment	
Parameters	Doses (mg/kg)				
	0	250	500	250	500
Testosterone / ng/dL	451 ± 3.70	412 ± 3.20	562 ± 1.40*ab	482 ± 15.34*b	566 ± 54.20*ab
ng/uL	431 ± 3.70	412 ± 3.20	302 ± 1.40	402 ± 13.34	300 ± 34.20 °
Leutinizing hormone / ng/ml	0.53 ± 0.03	0.45 ± 0.01	$2.28 \pm 0.16*ab$	$1.31 \pm 0.05*ab$	$2.50 \pm 0.11*ab$
Follicle stimulating hormone / ng/ml	1.84 ± 0.01	$0.68 \pm 0.01*ab$	$3.19 \pm 0.08*ab$	$3.16 \pm 0.04 *ab$	$3.92 \pm 0.79*abc$

3rd International Conference and Exhibition on Pharmacognosy, Phytochemistry & Natural Products

Oct 26-28, 2015 Hyderabad, India

Acknowledgement

Tertiary Education Trust Fund (TETFUND) FEDERAL GOVERNMENT OF NIGERIA

THANKS FOR LISTENING

NAMASTE