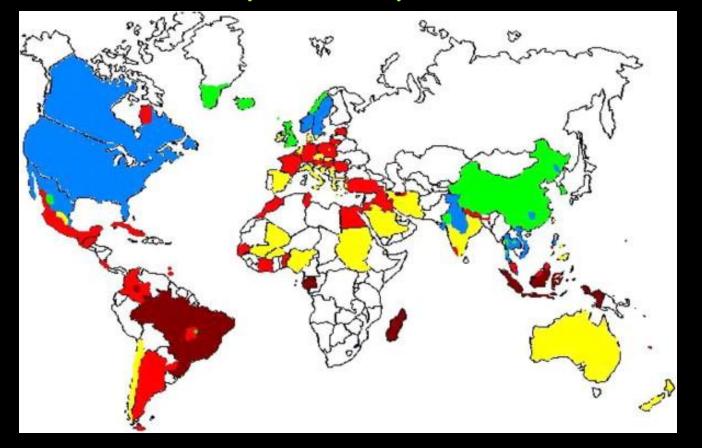


Does vertical transmission play a role in generating the high prevalence and ubiquity of *Toxoplasma gondii* in natural populations of humans and animals?

> Professor Geoff Hide School of Environment and Life Sciences, University of Salford, UK

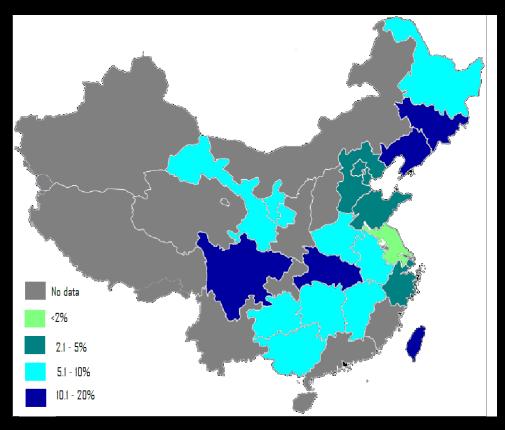
Overview

- Background to disease
- Transmission in mammalian hosts
- Sheep, rodents and humans


Toxoplasmosis

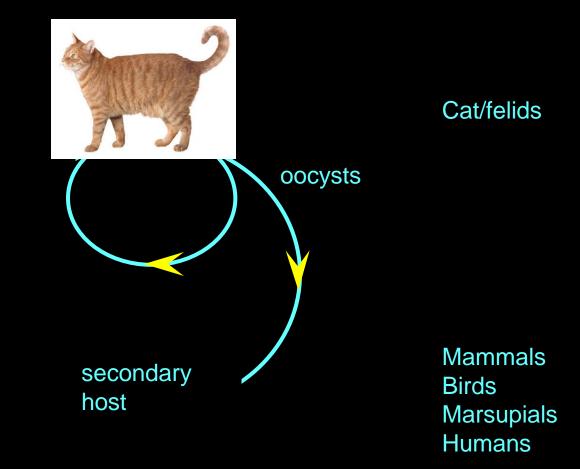
- Toxoplasma gondii
- Wide geographical range
- All warm blooded animals
- High prevalences
- Parasite of the cat

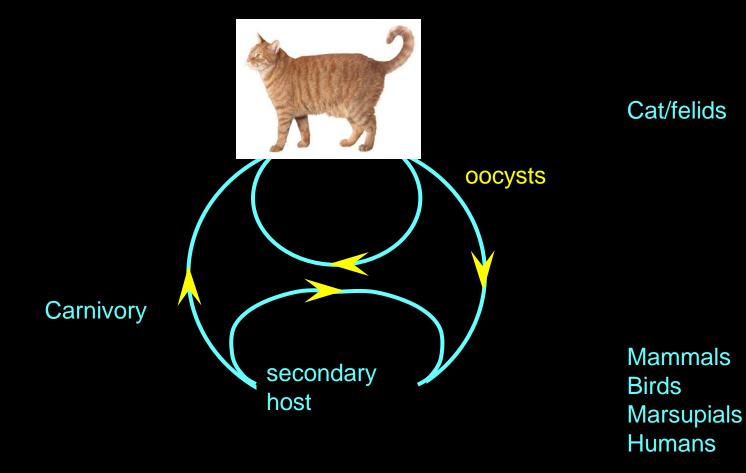
Disease

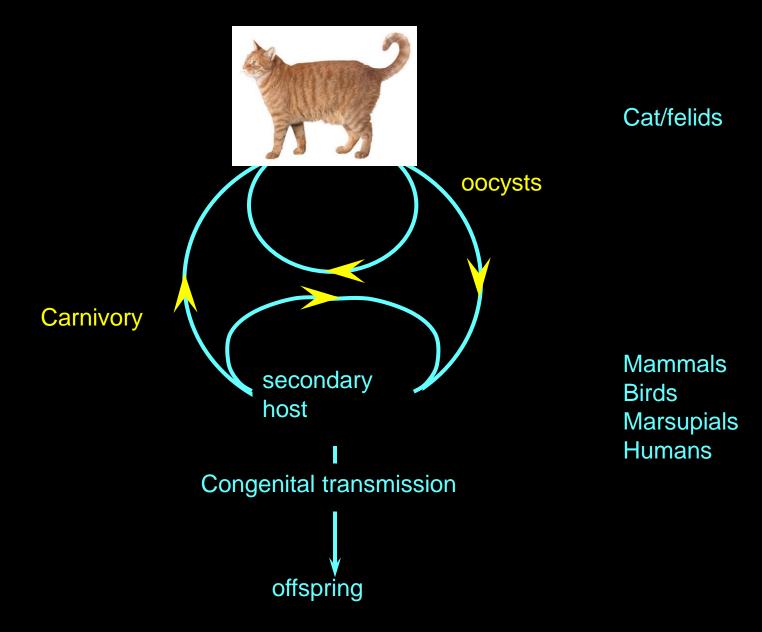

- Serious disease
- Abortion/miscarriage
- Ocular disease
- Domestic animals + humans

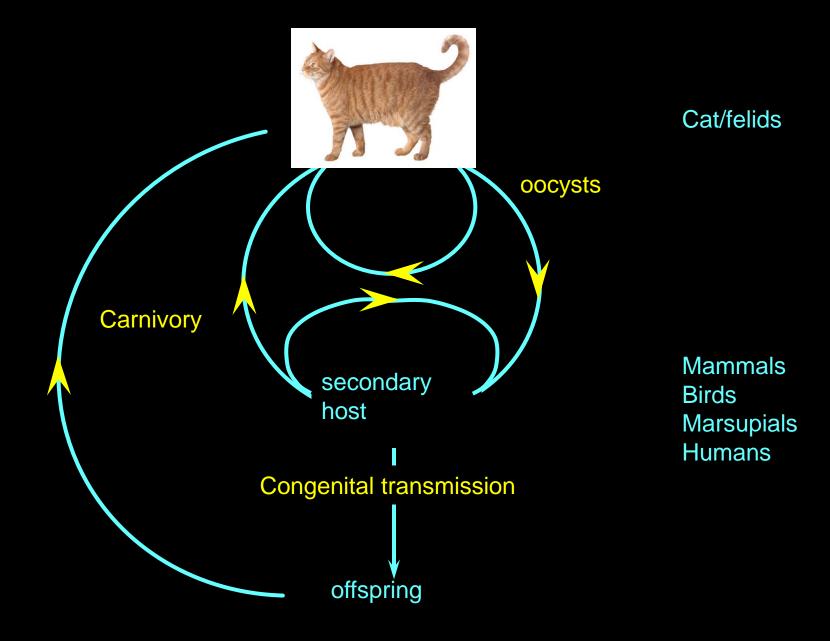
Global *Toxoplasma* prevalence

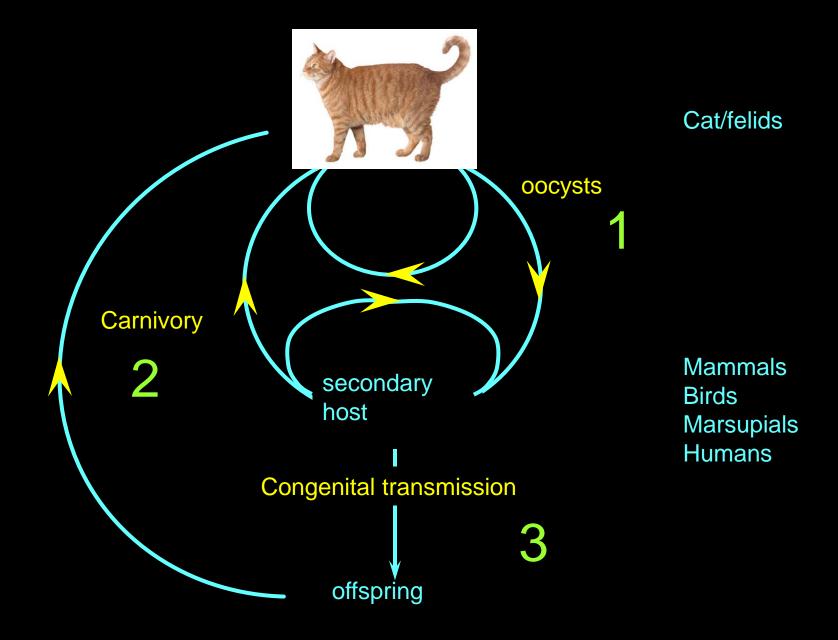
Toxoplasma prevalence in pregnant women in China




Abortion in sheep




Ocular disease - age 19 and 40



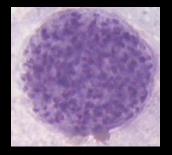
A dilemma...

- Cat is the only definitive host
- Parasite is ubiquitous and is often found at high prevalences

What is the importance of transmission cycles which bypass the cat? Is congenital/vertical transmission important in natural populations of rodents?

Study 1 Wild population of mice: Study and Objectives • 200 mice were trapped from

- 200 mice were trapped from an urban location
- Analysis of infection rates using PCR (SAG1 Gene)
- Analysis of transmission in pregnant mice



n = 200

n = 16

Results

- 59% of mice infected with Toxoplasma
- 16 mice pregnant
- 12 of the pregnant mothers were positive

Results - pregnant mice

Female status	Pregnant females	Number of foetuses	Infected foetuses %
Infected	12	47/63	74.6
Uninfected	4	0/15	0
Total	16	47/78	60.2%

Results - pregnant mice

Female status	Pregnant females	Number of foetuses	Infected foetuses %
Infected	12	47/63	74.6
Uninfected	4	0/15	0
Total	16	47/78	60.2%

Conclusions

- High frequency of congenital transmission (100% from infected mothers)
- 75% of pregnancies (overall) and 74.6% of foetuses
- Congenital transmission may be a general phenomenon

Study 2 Captive population of mice: Study and Objectives

- Colony of mice set up from wild mice "founders"
- Colony existed for >5years and many generations
- Tested for *Toxoplasma* by SAG1-PCR

Results

- Tested 89 mice
- 68/89 (76.4%) infected
- Genotyped mice highly inbred

Conclusions

- High prevalence of infection
- Closed colony, therefore cats not involved
- Congenital transmission may be a general phenomenon

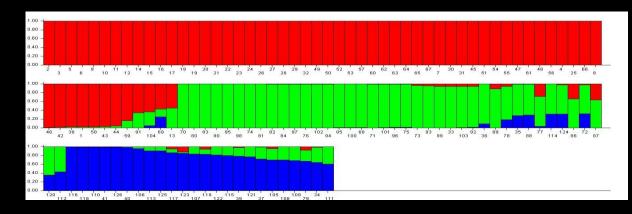
Study 3 Wild population of woodmice living in an area relatively free of cats: Study and Objectives

- Apodemus sylvaticus (Woodmice) collected from a cat free area
- 2 were pregnant
- Tested for *Toxoplasma* by SAG1-PCR

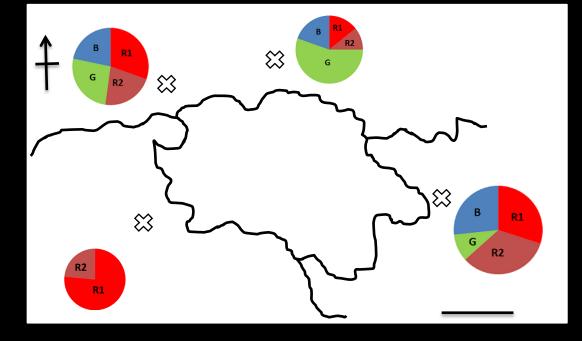
Results

- Tested 206 woodmice
- 84/206 (40.78%) infected
- 1 of 2 pregnant mice were infected and transmitted to the foetus (100% congenital)
- Toxoplasma transmission occurring at high frequency in the absence of cats

Results


- Comparison *Toxoplasma* prevalence in an area with and without cats
- With cats (>500 cats/km²) 59%
- Without cats (<2.5 cats/km²) -40.78%

Study 4 Spatial and genotypic distribution of infection in a natural population Study and Objectives:


- Apodemus sylvaticus (Woodmice) collected and genotyped using microsatellite markers
- Tested for *Toxoplasma* by SAG1-PCR

Results

Populations by micro – satellite DNA analysis

Geographical locations

Results

Population	No. tested	No. Positive for T. gondii	Prevalence (%)
R1	37	5	13.5%
R2	25	8	32.0%
G	40	18	45.0%
В	24	13	54.2%

Conclusions

- A highly significant association between genetic group and prevalence (P=0.004)
- No significant association with location of mice (P=0.125)

Conclusions

- Evidence for high frequency of congenital transmission in both wild and captive populations of mice
- High prevalence even in the absence of cats

Is congenital/vertical transmission important in natural populations of sheep?

Current views

- Sheep infected by oocyst infected feed/bedding/water
- Immunity following infection safe to breed from infected ewes
- Vertical transmission at low levels

Study and Objectives

- Sheep are not carnivores
- Measure vertical transmission
- Use PCR to detect parasites from newborn lambs

Sampled umbilical cord tissue from newborn lambs

Sampled internal tissues from aborted lambs

	Successful pregnancies	Unsuccessful pregnancies	Total pregnancies
Pregnancies	334	58	392
PCR Positive	218	53	271
Percentage	65%	91%	69%

	Successful pregnancies	Unsuccessful pregnancies	Total pregnancies
Pregnancies	334	58	392
PCR Positive	218	53	271
Percentage	65%	91%	69%

	Successful pregnancies	Unsuccessful pregnancies	Total pregnancies
Pregnancies	334	58	392
PCR Positive	218	53	271
Percentage	65%	91%	69%

	Successful pregnancies	Unsuccessful pregnancies	Total pregnancies
Pregnancies	334	58	392
PCR Positive	218	53	271
Percentage	65%	91%	69%

Conclusions

- High levels of congenital transmission
- Healthy infected lambs
- Abortion associated with infection
- Possible role for vertical transmission
- Wrong advice to farmers?

Do we detect differences in *Toxoplasma* infection in different families of sheep?

 Ingestion of oocysts from feed/bedding/water

 Ingestion of oocysts from feed/bedding/water

Expectation 1

 Infection with *Toxoplasma* should be randomly distributed in families on the same farm

Vertical transmission: ewe to lamb

 Vertical transmission: ewe to lamb

Expectation 2

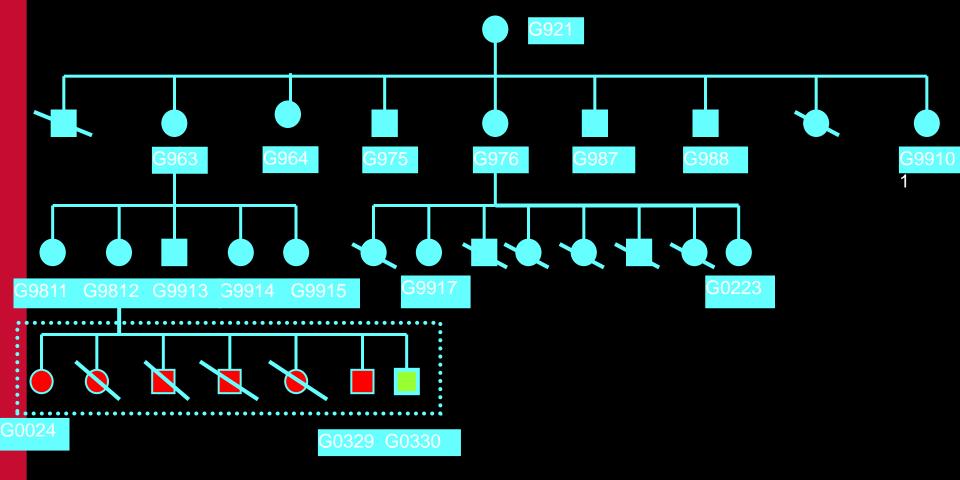
 Different infection levels in different families of sheep

Study and Objectives

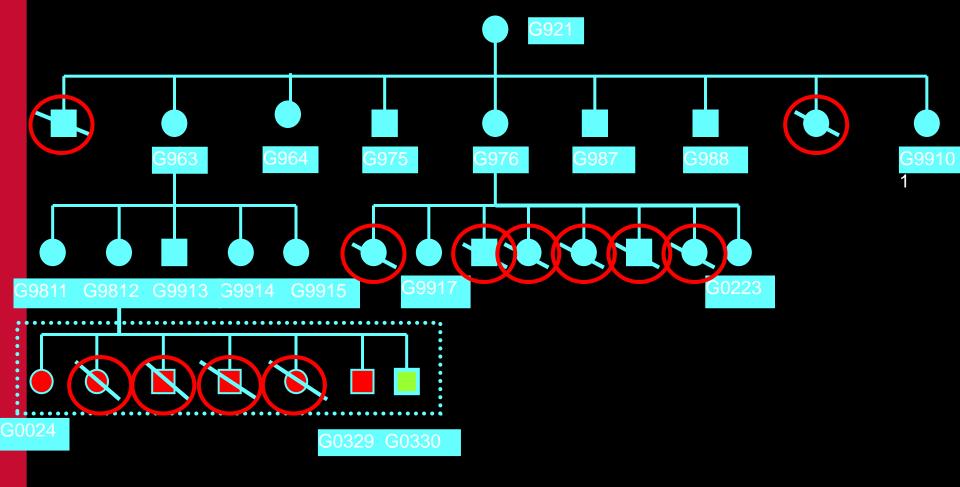
- Charollais pedigree flock
- Detailed lambing records going back 11 years
- Sampled lambs for *Toxoplasma* for 3 years
- Look for differences in infection levels in families

Family	Abortion %	Family	Abortion %
A901	48	R891	23
K891	40	D971	22
<i>G</i> 921	40	5921	20
L921	38	I921	20
F891	36	T941	18
<i>C</i> 921	33	U911	18
E921	33	V921	13
M981	30	W901	12
B921	29	X891	8
N971	27	Y901	8
H921	26	Z921	5
O921	26	J921	3
P881	24	AA891	0
Q911	23		

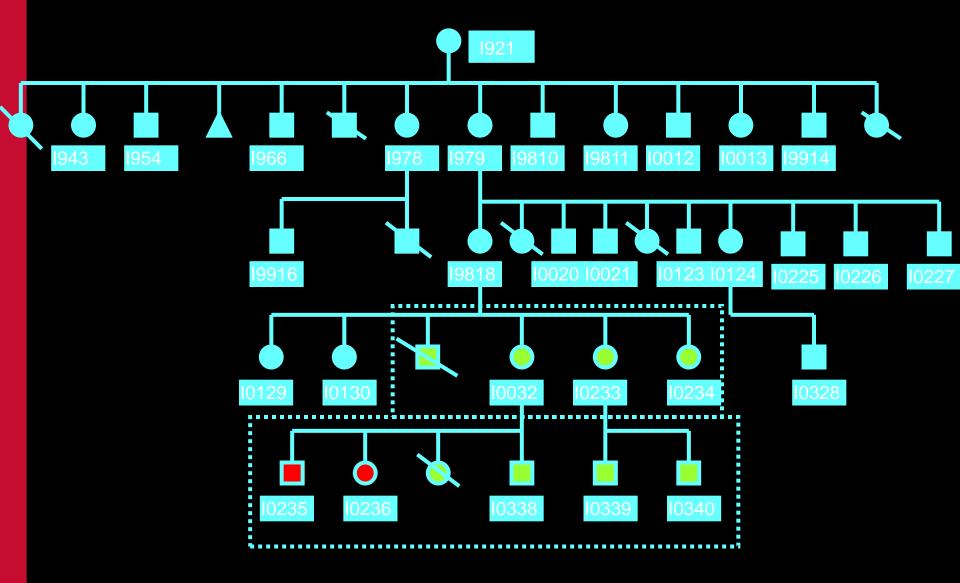
	Abortion		Abortion	
Family	%	Family	%	
A901	48	R891	23	
K891	40	D971	22	
6921	40	5921	20	
L921	38	I921	20	
F891	36	T941	18	
C921	33	U911	18	
E921	33	V921	13	
M981	30	W901	12	
B921	29	X891	8	
N971	27	Y901	8	
H921	26	Z921	5	
0921	26	J921	3	
P881	24	AA891	0	
Q911	23			

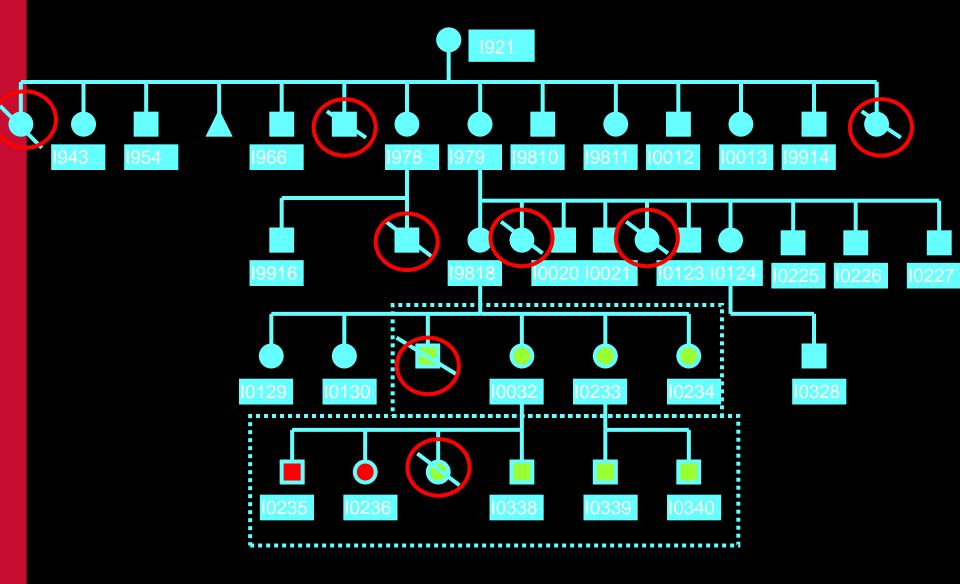

Family	Infection %	Family	Infection %
A901	100	R891	50
K891	100	D971	100
G921	86	5921	20
L921	100	I921	20
F891	83	T941	18
C921	83	U911	20
E921	100	V921	22
M981	75	W901	17
B921	75	X891	14
N971	100	Y901	0
H921	75	Z921	0
O921	73	J921	Ο
P881	67	AA891	0
Q911	60		

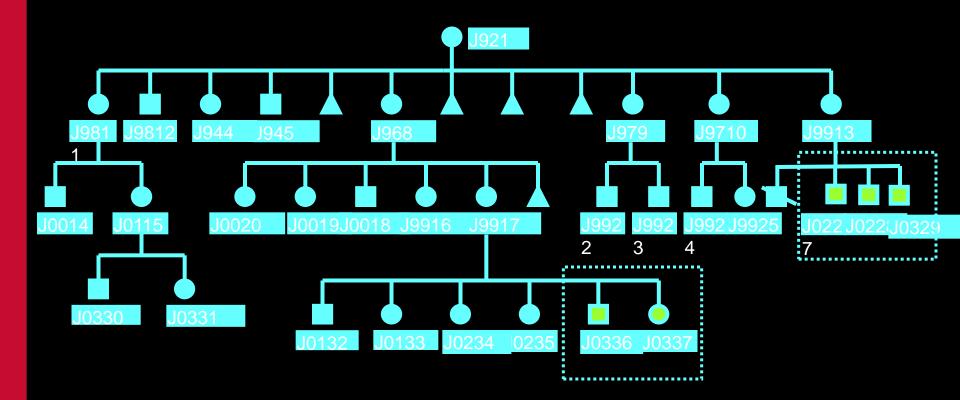
Family	Infection	Family	Infection
ranny	%	r army	%
A901	100	R891	50
K891	100	D971	100
G921	86	5921	20
L921	100	I921	20
F891	83	T941	18
C921	83	U911	20
E921	100	V921	22
M981	75	W901	17
B921	75	X891	14
N971	100	Y901	0
H921	75	Z921	0
O921	73	J921	0
P881	67	AA891	0
Q911	60		

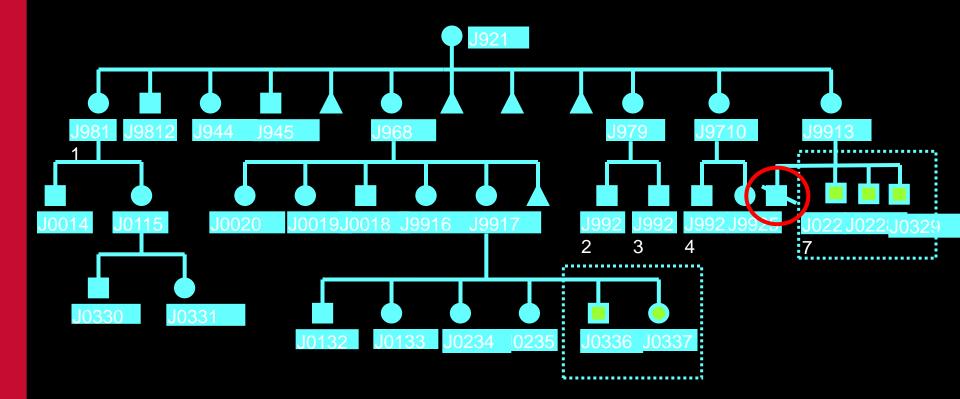

Family	Abortion	Infection	Family	Abortion	Infection
	%	%		%	%
A901	48	100	R891	23	50
K891	40	100	D971	22	100
G921	40	86	5921	20	20
L921	38	100	I921	20	20
F891	36	83	T941	18	18
C921	33	83	U911	18	20
E921	33	100	V921	13	22
M981	30	75	W901	12	17
B921	29	75	X891	8	14
N971	27	100	Y901	8	0
H921	26	75	Z921	5	0
O921	26	73	J921	3	0
P881	24	67	AA891	0	0
Q911	23	60			

	Abortion	Infection		Abortion	Infection
Family	%	%	Family	%	%
A901	48	100	R891	23	50
K891	40	100	D971	22	100
G 921	40	86	5921	20	20
L921	38	100	I921	20	20
F891	36	83	T941	18	18
C921	33	83	U911	18	20
E921	33	100	V921	13	22
M981	30	75	W901	12	17
B921	29	75	X891	8	14
N971	27	100	Y901	8	0
H921	26	75	Z921	5	0
0921	26	73	J921	3	0
P881	24	67	AA891	0	0
Q911	23	60			


Family with high frequency of abortion and infection


Family with high frequency of abortion and infection


Sheep family with intermediate frequencies of abortion and infection


Sheep family with intermediate frequencies of abortion and infection

Sheep family with low frequency of abortion and infection

Sheep family with low frequency of abortion and infection

Results

- Abortion rates: highly significant difference from randomness (P<0.01)
- Infection rates: highly significant difference from randomness (P<0.01)
- Highly significant correlation between frequency of abortion and frequency of infection (r = 0.89, n=27, P<0.01)

Significance

- Strong evidence for the importance of vertical transmission
- Breeding from infected families may increase infection and abortion rates

What is the risk of increasing infection by breeding from infected ewes?

High risk of subsequent abortion 55% High risk of subsequent infection 69%

071

Evidence that primary infection of Charollais sheep with *Toxoplasma gondii* may not prevent foetal infection and abortion in subsequent lambings 169

E. K. MORLEY¹, R. H. WILLIAMS¹, J. M. HUGHES¹, D. THOMASSON¹, R. S. TERRY², P. DUNCANSON¹, J. E. SMITH² and G. HIDE^{1*}

¹Centre for Parasitology and Disease, Biomedical Sciences Research Institute, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK ²School of Biology, University of Leeds, Leeds LS2 99T, UK

(Received 22 June 2007; revised 20 August 2007; accepted 21 August 2007; first published online 9 October 2007)

Is congenital/vertical transmission important in humans?

Current views

- Congenital transmission occurs at very low levels (1-2/1000).
- Can result in significant disease but rare
- Associated with infection during pregnancy
- Serological detection systems commonly used

Study and Objectives - 2 studies

- Miserata Central Hospital, Libya
- 276 umbilical cord samples from 272 pregnancies
- Stepping Hill Hospital, Manchester, UK
- 94 umbilical cord samples

Results - human samples Libya

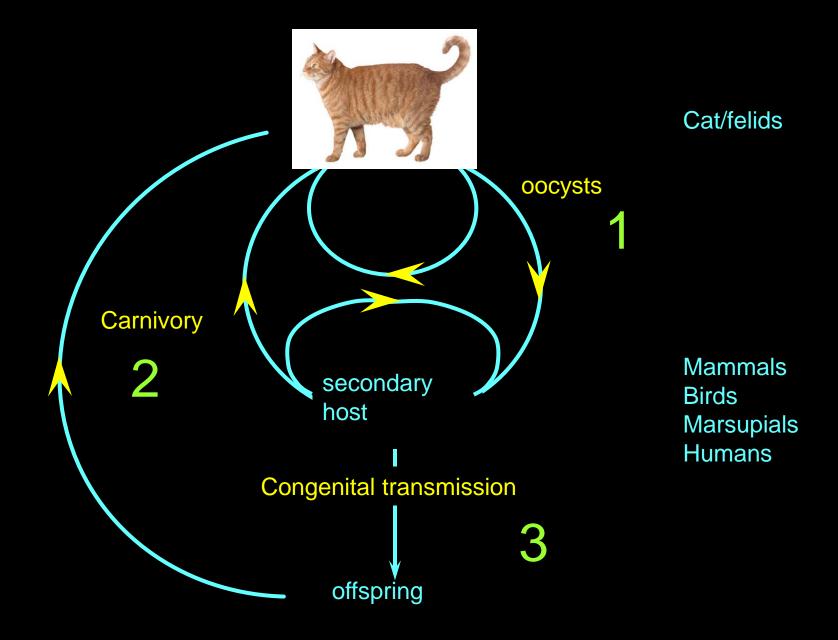
	Successful pregnancies	Unsuccessful pregnancies	Total pregnancies
Pregnancies	267	5	272
PCR Positive	27	0	27
Percentage	10.1%	0%	9.93%

Results - human samples Libya

	Successful pregnancies	Unsuccessful pregnancies	Total pregnancies
Pregnancies	267	5	272
PCR Positive	27	0	27
Percentage	10.1%	0%	9.93%

Results – human samples Manchester

	Successful pregnancies	Unsuccessful pregnancies	Total pregnancies
Pregnancies	99	0	99
PCR Positive	33	0	33
Percentage	33.3%	0	33.3%


Results – human samples Manchester

	Successful pregnancies	Unsuccessful pregnancies	Total pregnancies
Pregnancies	99	0	99
PCR Positive	33	0	33
Percentage	33.3%	0	33.3%

Conclusions

- High frequency of congenital transmission
- Healthy infected babies born
- Possible evidence for vertical transmission

Life cycle of Toxoplasma gondii

Overall Conclusions

 Our data are consistent with transmission cycles which bypass the cat

 Our data suggest that vertical transmission may be a possible explanation of the wide prevalence and ubiquity of this parasite

Salford University, UK Prof Geoff Hide Dr Phil Duncanson Dr Rebecca Terry Dr Huw Williams **Dr Emma Morley** Dr Jacqueline Hughes Dr Omar Gerwash Dr Muftah Abushahma Dr Denise Thomasson Liz Wright Dr Sameena Haq **Dr Nicole Dodd Jaroslav Bajnok Prof Gai Murphy Prof Judith Smith**

Stepping Hill Hospital (Manchester) Dr Mona Kamran Dr Claire Candelier

Libya (Miserata Hospital) Prof Mohamed S. Elmahaishi Dr Khalid H. Elmahaishi

China (Sun Yat-Sen University, Guangzhou) Prof Zhao-Rong Lun and colleagues

China (Anhui Medical University, Hefei) Prof Ji-Long Shen and colleagues

Sorex (BASF), UK Dr Sharon Hughes