Tackling Antibiotic Resistance for Global Health: Future Challenges

Dr. Gannu Praveen Kumar M. Pharm., PhD Professor and Principal Department of Pharmaceutics Sahasra Institute of Pharmaceutical Sciences

The "Miracle" of Antibiotics

- Discovery of penicillin by Sir Alexander Fleming and its subsequent development by Florey & Chain revolutionised treatment of infectious disease

Crude mortality rates for all causes, noninfectious causes and infectious diseases over the period 1900-1996

Antibiotic Resistance

- It took less than 20 years for, bacteria to show signs of resistance
- Staphylococcus aureus, which causes blood poisoning and pneumonia, started to show resistance in the 1950s
- Today there are different strains of *S. aureus* resistant to every form of antibiotic in use

Timeline of antibiotics discovery and the evolution of antibiotic resistance

The Discovery and Consequent Development of Antibiotic Resistance

EVOLUTION OF RESISTANCE TO ANTIBACTERIALS

Antibiotic	Year Deployed	Resistance Observed
Sulfonamides	1930s	1940s
Penicillin	1943	1946
Streptomycin	1943	1959
Chloramphenicol	1947	1959
Tetracycline	1948	1953
Erythromycin	1952	1988
Vancomycin	1956	1988
Methicillin	1960	1961
Ampicillin	1961	1973
Cephalosporins	1960s	late 1960s

Table 20.2 Microbiology: A Clinical Approach (© Garland Science)

Gram Positive Resistance

Methicillin-Resistant Staphylococcus aureus Vancomycin-Resistant Enterococcus

National Nosocomial Infections Surveillance (NNIS) System

Gram Negative Resistance

3rd Generation Cephalosporin-Resistant *Klebsiella pneumoniae*

Fluoroquinolone-Resistant Pseudomonas aeruginosa

National Nosocomial Infections Surveillance (NNIS) System

New Antibacterial Drugs Approved By FDA

Tip of the Iceberg?

Clin Infect Dis 2003;37:326-32

Antibiotics continue to save lives every day...

- Ability to <u>control infection</u> is critical to other advances in medicine
 - Neonatal care
 - Transplantation
 - Chemotherapy for malignancy
 - Immunosuppression
 - Safe surgery
 - Safe obstetric care
 - Intensive care interventions

Antibiotic Mechanism of Action

Case I

Jane has a sore throat. Without testing, her health care provider prescribes penicillin "just in case" it's strep.

Jane's symptoms are caused by a virus, but she also has bacteria in her sinuses.

Case II

Ashley comes home from school with a sore throat and fever.

After a positive strep test, her pediatrician prescribes penicillin.

Cont'd

Ashley takes her medicine for three days.

Ashley feels fine.

Her parents decide it's OK to stop.

Incomplete Treatment Causes Resistance

Unnecessary Antibiotics Cause Resistance

Jane takes penicillin.

Susceptible bacteria are killed off.

A few hardy survivors are left behind.

The survivors can withstand penicillin.

Antibiotic Overuse

Patient Concerns

- Want clear explanation
- Green nasal discharge
- Need to return to work

Physician Concerns

- Patient expects
 antibiotic
- Diagnostic uncertainty
- Time pressure

Antibiotic Prescription

Resistant Bacteria Can Multiply and Spread

Jane is now a carrier of penicillin-resistant bacteria.

Resistance spreads rapidly

Centers for Disease Control and Prevention http://www.cdc.gov

Resistant Infections Require Special Treatment

Mechanisms of Resistance

- Inactivation of drug

 Beta-lactamases
- Alteration of the target
 - Penicillin binding proteins
 - Ribosomes
- Decreased permeability
- Drug efflux

INACTIVATION OF ANTIBIOTIC

- Inactivation involves enzymatic breakdown of antibiotic molecules.
- A good example is β-lactamase:
 - Secreted into the bacterial periplasmic space
 - Attacks the antibiotic as it approaches its target

EFFLUX PUMPING OF ANTIBIOTIC

Efflux pumping is an active transport mechanism.

> It requires ATP.

• Efflux pumps are found in:

> The bacterial plasma membrane

> The outer layer of gram-negative organisms

Pumping keeps the concentration of antibiotic below levels that would destroy the cell
 Genes that code for efflux pumps are located on plasmids and transposons.

MODIFICATION OF ANTIBIOTIC TARGET

- Bacteria can modify the antibiotic's target to escape its activity
- Bacteria must change structure of the target but the modified target must still be able to function. This can be achieved in two ways:
 - Mutation of the gene coding for the target protein
 - Importing a gene that codes for a modified target

Impact of resistance

- Increased morbidity/ mortality
 - Evidence across many pathogens
- Untreatable infections
 - Now being encountered
- Increased costs
 - \$18-29,000 US/patient
 - Excess length of stay 6.4 12.7 days/patient

Emergence of Antimicrobial Resistance

New Resistant Bacteria

Selection for Antimicrobial-Resistant Strains

How antibiotic resistance can be prevented

Antibiotics should be the last line of defence NOT the first

- Most common infections will get better by themselves through time, bed rest, liquid intake and healthy living.
- Only take antibiotics prescribed by a doctor
- If prescribed antibiotics, finish the course.
- Do not use other peoples or leftover antibiotics
 - they be specific for some other infection

Be Realistic: It Takes Time to Get Over a Virus!

Nano-based Therapy to Combat Superbugs

Nanoparticles in Antibiotic Resistance

Major mechanism of action of ions

Mechanisms of AgNPs' toxic action

Nanotechnology in Antibiotic Resistance

Conclusion

- Development of antimicrobial resistance is directly related to antimicrobial usage, especially inappropriate usage
- Understanding antimicrobial kinetics & dynamics and resistance mechanisms can help guide appropriate usage
- Knowledge of local susceptibility patterns is essential
- Paucity of new antimicrobial agents in pipeline

Thank You