

SMARTBIOCONTROL

Highly sensitive smart biosensor, based on the surface plasmon resonance (SPR)

Ganesan Sivaramakrishnan sivaramakrishnan.ganesan@univ-lille.fr

Institut d'Electronique de Microélectronique et de Nanotechnologie

Optoelectronic group

Thesis director: Jean-Pierre VILCOT, IEMN, CNRS Thesis co-supervisor: Sophie MARICOT, IEMN, Univ. Lille

Biosensors and Bioelectronics 14th international conference - Montréal, Canada 28 sep 2020

Our Aim is to use SPR technique in phytosanitary field

SMARTBIOCONTROL

Zymoseptoria tritici

It is a wheat plant pathogen causing septoria leaf blotch that is difficult to control due to resistance to multiple fungicides.

 \succ Reduce yields of wheat by 30 to 50% with a huge economic impact.

This fungus is difficult to control because populations contain extremely high levels of genetic variability and it has very unusual biology for a pathogen.

SMARTBIOCONTROL BioSens

What are surface plasmons ?

SMARTBIOCONTROL BioSens

- → This oscillations can be imaged as evanescent waves. Plasmonic waves extend into both materials → penetration depths.
- → The plasmonic wave property depends on both the materials physical properties eg: dielectric permittivity.

Basic principles of surface plasmon resonance ?

- → The plasmonic wave does not exist spontaneously, it required additional energy to be excited e.g.: photons.
- → For the photons to excite the plasmons, they must have same frequency momentum as that of the plasmons (they must be in resonance).

SMARTBIOCONTROL BioSens

Basic principle of SPR detection

SMARTBIOCONTROL

SPR-Biosensor

As the penetration depth is few hundreds of nm, So the biorecognition element shall be very close to the surface of the metal.

SMARTBIOCONTROL **BioSens**

Refractive index corresponding to antibodies

intensity

Interreg

Functionalized surface Fixed reference (Buffer solution) Positive Test Fixed reference Fixed reference

SENSOR Design

SENSOR Design

Fully metallized

SPR sensor separated by channels

SMARTBIOCONTROL

Fabrication of 4-channels SPR sensor

Plasma corona treatment of PDMS surface and 4 channel SPR sensor Sensor with microfluidic facilities.

Spectral interrogation SPR set-up

SMARTBIOCONTROL

Detector, spectromete

Detection of Zymoseptoria

16

SMARTBIOCONTROL BioSens

Importance of temperature during the measurement of molecular interaction(eg: DNA DNA interaction)

wavelength

intensity

SPR sensor channel as a Joules heater and Experimental characterization

Modelling of the thermal behavior of the plasmonic layer

18

 \vdash

Thermal characterization of the plasmonic layer.

QFI- Quantum focus instrument InfraScopeTM Temperature Measurement Microscope Systems:

Comparison of Experiment and modelling results

Measuring the refractive index of water in function of temperature Using SPR sensing instrument

Calculate Temperature on injected current through a plasmonic channel

Measuring the refractive index of water in function of temperature Using SPR sensing instrument

Simultaneous temperature control of two plasmonic channels

25

• Using plasmonic layer as a heater to be used for portable SPR systems.

• Sensitivity improvement of the portable SPR system.

Implementation of temperature sensor(Pt) on the Plasmonic layer to directly measure the temperature at the sensor surface.

SMARTBIOCONTROL BioSens

Thank you

iemn Institut d'Electronique, de Microélectronique et de Nanotechnologie UMR CNRS 8520

