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Neutron technology for elemental analysis 

Area of application 

• Detection of threat material (explosives, drugs and dangerous chemicals) 

• Archaeological site surveys and provenance studies 

• Determination of elemental composition of human and animal tissues 

• Soil science 

• Real-time elemental analysis of bulk coal moving on conveyor belts 

• Well logging during oil exploration 

• Planetary science 

 

Background of evolution 

• Availability of commercial products: portable pulse neutron generators, high efficiency 
gamma detectors, reliable electronics, and measurement processing software 

• Detailed knowledge of neutron interactions with nuclei (processes, neutron database of 
cross-sections) 



Advantages 

- Non-Destructive 

- In situ; No sample preparation 

- Multi-elemental analysis of large volumes 

- Impact of local sharp changes in element content are negligible 

- Scanning capability 

Neutron-Gamma Methods 
 
•PGNAA - Prompt Gamma Neutron Activation Analysis 
•PFNA    - Pulsed Fast Neutron Analysis 
•PFTNA  - Pulsed Fast/Thermal Neutron Analysis (Womble et al., 1995) 

•PFNTS   - Pulsed Fast Neutron Transmission Spectroscopy 
•API        - Associated Particle Imaging 



Neutron interaction with an atomic nucleus 

* 

Neutron Nucleus Excited 
Nucleus 

g-rays due to Inelastic 

     Neutron Scattering 

g-rays due to Thermal 

     Neutron Capture 

Delay Activation g-rays 

Each kind of nucleus and process produces gamma-rays of a particular energy 

General Principal of the N-G method 

Soil 

Element 

Applied for analysis 

Kind of 

Neutrons 
Process 

Cross-

Section, b 

Characteristic gamma 

line, MeV 

Si Fast INS 0.52 1.78 

O Fast INS 0.31 6.13 

H Thermal TNC 0.33 2.22 

C Fast INS 0.42 4.43 

N Thermal TNC 0.08 10.8 

Cl Thermal TNC 43 1.64 



Scope of the Soil Element and 
Knowledge Importance 

1. Carbon 

• An universal indicator of soil quality that can impact many 
environmental processes, such as soil carbon sequestration, 
fertility, erosion, and greenhouse gas fluxes 

2. Nitrogen 

• Detection of dangerous hidden objects in soil (explosives) by 
presence of nitrogen and C/N ratio 

3. Chlorine 

• Detection of soil chlorine (contamination and distribution) 
and underground objects that contain chlorine 



Time Separation of INS+TNC and TNC Gamma Spectra 
for the Pulsed Fast/Thermal Neutron-Gamma Method 
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Experimental Soil Gamma Spectra 

Field System Geometry and Design 

Soil Carbon Measurements 

Dimensions: 75 x 23 x 95 cm3 

Weight: ~ 300 kg 
 
System Components: 
Neutron Generator MP320 
3 Gamma Detectors - NaI(Tl) 
Neutron Detector 
4 Batteries 
Inverter 
Laptop 
Shielding 
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Problems 

• Presence of other soil elements 

- Separating the carbon peak area at 4.43 MeV 

from other gamma rays 

 



Peak Compositions in raw INS+TNC spectrum 

 The main peak of interest at 4.43 MeV contains interference from the silicon gamma line 

 This interference can be taken into account through correlation with the 1.78 MeV peak 

 Gamma rays from TNC processes are present in both peaks 

 System background is present in both peaks 

The separation carbon peak area at 4.43 MeV 
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Background Measurement 
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Effects of neutron interactions with soil are negligible at heights > 4 m  



Net INS spectrum 

Net INS Spectrum =  

      Net-INSSoil - Net-INSBkg = (INS&TNC – TNC)Soil - (INS&TNC – TNC)Bkg 
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Peak Compositions 

 The main peak of interest at 4.43 MeV contains interference from the silicon gamma line 
 

 This interference can be taken into account through correlation with the 1.78 MeV peak 

The separation carbon peak area at 4.43 MeV 

The cascade transition of excited Si at 6.23 MeV to ground state goes through the 
4.50 MeV and 1.78 MeV levels 
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The separation carbon peak area at 4.43 MeV 
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Pair production
peak 0.511 MeV

Net C peak areai = 4.43 MeV C peak areai - fi · 1.78 MeV Si peak areai 

Si cascade transition coefficient f = 0.0547  (Herman et. al., 2007) 

f1 = 0.058 f2 = 0.054 
Reference pits: 150 cm x 150 cm x 60 cm3 

sand + carbon homogeneous mixture; 
Carbon content 0-10w% 

Extraction of the carbon signal from peak with centroid at 4.43 MeV 

Net INS spectra Silicon and Carbon Peak areas vs Carbon content 
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Problems 

• Effects of soil carbon distribution 

- Attributing the INS signal to certain soil carbon 

characteristics 

 



Monte-Carlo Simulation 
for different carbon distributions  
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Carbon surface density at 30 cm = const 

Carbon INS peak area can’t characterize the soil carbon content 
expressed in carbon surface density at 30 cm  

Net C peak area = 4.43 MeV C peak area - f · 1.78 MeV Si peak area ≠ const 

Peak at 4.43 MeV 



Calibration of INS signal vs. different soil characteristics 
for homogeneous carbon distribution  

vs. Surface Density in the 1-20 cm soil layer, gC/cm2 vs. average Carbon Weight % in soil layer, Cw% 
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kSD,1 = f(thickness) kw%,1 ≠ f(thickness) 

Net Carbon Peak Area = k · Carbon content  
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AvgCw%(th)DC = f(Thickness) 
 
SD(th)DC = f(Thickness) 

Net INS spectra Carbon Distribution Field Data 
from dry combustion analysis and artificial 

Cw%INS,i = Net C Peak Areai/ kw%,i 
 
SD(th) INS,i = Net C Peak Areai/ kSD,i(th) 
 

MC Simulation and Field INS measurements 
of soil with non-uniform carbon distribution  

Simulation 

Experiment 

i=1 (MC simulation), 2(experiment) 

2

3

4

5

6

7

8

9

100

2

G
a
m

m
a
 r

a
y
s
 y

ie
ld

, 
c
p
s
/c

h

5.04.54.03.53.02.52.01.5

Energy, MeV

4.43 MeV

1.78 MeV

3

4

5

6

7

8

9
100

2

3

4

G
a
m

m
a
 r

a
y
 y

ie
ld

, 
a
rb

. 
u
n
it

5.04.54.03.53.02.52.01.5

Energy, MeV

1.78 MeV

4.43 MeV



Comparison of INS and 
carbon depth profile distribution data 

The value of carbon weight percent coincides with the average weight percent 
at thickness ~10 cm for any carbon distribution 
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Experimental results demonstrate that the INS signal can be attributed 
to the average carbon soil content in ~10 cm upper soil layer 
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Comparison of INS and Dry Combustion 

Location 

Site # 

or 

Plot # 

MINS measurements Dry Combustion measurements 

Carbon, 

w% 

STD, 

w% 

Plot Average 

±STD, w% 

Carbon, 

w% 

STD, 

w% 

Plot Average 

±STD, w% 

Camp Hill 

Open Field 

OF1 2.20 0.29 

2.23±0.45 

2.85 0.25 

2.25±0.51 

OF2 2.51 0.29 2.54 0.31 

OF3 1.76 0.22 1.91 0.13 

OF4 1.88 0.23 2.99 0.94 

OF5 2.82 0.25 3.03 0.37 

OF6 2.15 0.21 1.99 0.26 

OF7 2.77 0.32 1.92 0.41 

OF8 2.52 0.25 2.44 0.15 

OF9 2.06 0.26 1.79 0.27 

OF10 2.17 0.27 2.25 0.45 

OF11 2.39 0.22 2.23 0.30 

OF12 3.11 0.31 2.91 0.47 

OF13 1.44 0.25 1.49 0.42 

OF14 1.93 0.29 1.80 0.19 

OF15 1.86 0.27 1.67 0.25 

Camp Hill 

Applied 

Field 2 

AF2-1 1.22 0.38 

1.59±0.45 
2.00 0.34 

1.48±0.46 AF2-2 2.09 0.37 1.14 0.34 

AF2-3 1.46 0.37 1.31 0.08 

Camp Hill 

Applied 

Field 3 

AF3-1 1.44 0.43 

1.77±0.37 
1.96 0.34 

1.90±0.53 AF3-2 1.68 0.37 1.34 0.34 

AF3-3 2.17 0.39 2.4 0. 8 

Camp Hill 

Applied 

Field 4 

AF4-1 2.59 0.42 

2.33±0.34 
1.58 0.34 

2.12±0.46 AF4-2 2.47 0.37 2.35 0.34 

AF4-3 1.94 0.45 2.42 0.14 

Experimental results demonstrate that the INS signal can be assign 
to the average carbon soil content in ~10 cm upper soil layer 



Comparison of INS and Dry Combustion 

Maps plotted using INS and Dry combustion data are similar 

Mapping of carbon content 

INS system Dry combustion 

Working Time = 2 days Working Time = 2 months 



Conclusions for Carbon Measurements 

• A reliable mobile system based on the Pulsed Fast/Thermal Neutron-
Gamma method for soil carbon measurements was developed and 
constructed: 

- The procedure for net carbon signal extraction was defined 

- The net carbon signal is directly proportional to the average carbon 

weight percent in the ~10 cm upper soil layer for any carbon 
distribution 

- The duration of one INS measurement is 30-60 minutes 

- The minimal measurement level of soil carbon content was estimated   
to be ~ 1.0 w% with standard deviation within ± 0.5 w% 

 

 



Chlorine measurements 

Dependences of the 1.16 MeV peak area 

vs moderator thickness 

Polyethylene moderator with thickness of 5 cm was chosen for further measurements 

TNC spectra with and w/o moderator 
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-    Sources of chlorine contamination: Chlorinated hydrocarbons, components of explosive ordinance 
(trinitrochlorobenzene, ammonium perchlorate, and tetraaminecopper perchlorate) 

- The ability to detect chlorine contamination or chlorine-containing objects buried under soil 
quickly and remotely is desirable. 

- Cl-35 TNC -> 1.16 MeV-> 43 b 
- The field system for carbon measurement with an additional moderator is suitable for chlorine 

measurement   



Chloride Surface Contamination Measurements 

Dependences of the 1.16 MeV peak area 

vs NaCl surface density 

The current mobile system can determine a 

contamination spot at levels of several tenths  

of a kilogram chlorine per square meter in the 

“pseudo”-scanning regime 
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Buried Chloride Object Measurements 

Dependences of the 1.16 MeV peak area 

vs Depth to Buried Object 

The current mobile system can detect objects with several kilograms of chloride 

buried at a depth of ~30-40 cm under the soil surface 
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Nitrogen Measurements 
by Pulsed Fast/Thermal Neutron-Gamma Method 

-    The non-invasive determination of the C/N atomic or mass ratio is used for detecting explosive materials            
in studied objects 

- C-12 INS -> 4.43 MeV -> 0.42 b;   N-14 TNC -> 10.82 MeV-> 0.08 b 
- Field system for carbon measurement is suitable for C/N measurement   
- Samples m=30 kg; Volume = 40x40x20 cm3; Atomic C/N=0.2 – 1.2; Density = 0.96 – 0.81 g/cm3 
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C/N measurements  

The ratio of the carbon (INS) to nitrogen (TNC) peaks 
vs C/N atomic ratio in samples 

The accuracy of C/N ratio determination is ± 0.03 

(for comparison, the accuracy of C/N ratio determination in Mitra (2012) is ± 0.25) 
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Conclusions 

• The procedures determining soil carbon content by the Pulsed 
Fast/Thermal Neutron-Gamma Method were developed; 

• This method can define the soil carbon content in the upper soil 
layer much faster than the traditional dry combustion method; 

• This method can be used to detect chlorine contamination or 
chlorine-containing objects buried under soil quickly and remotely; 

• The accuracy of the C/N ratio determination of dangerous objects is 
several times better than other previously described variants of 
neutron-gamma analysis. 

 

 



Future Work 

• Optimize the Pulsed Fast/Thermal Neutron 
System design to improve sensitivity and 
accuracy 

- Number of the detectors 

- Shielding 

- Geometry 

• Testing the workability of the system in the 
scanning regime 
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Thank you! 
Please, any questions? 


