Resilient Information Architecture Platform for the Smart Grid: RIAPS

Gabor Karsai, Vanderbilt University (PI)
In collaboration with
Abhishek Dubey (Vanderbilt)
Srdjan Lukic (NCSU)
Anurag Srivastava (WSU)

Supported by DOE ARPA-E under award DE-AR0000666

https://riaps.isis.vanderbilt.edu/

The Energy Revolution: Big Picture

From centralized to a decentralized and distributed energy systems

Changing Generation Mix

Transactive Energy

Electrical Cars

Decentralization

The control picture has not changed

The control picture has not changed

RIAPS Vision

RIAPS Vision

- Push computation to the edge
- Enable common technology stack across the ecosystem
- Provide core services to enable the *rapid* development of *smart* apps

RIAPS Software Platform

- At the core of the RIAPS vision is <u>a reusable</u>
 <u>technology</u> stack to run <u>Smart Grid applications</u>
 A software platform defines:
 - Programming model (for distributed real-time software) on embedded nodes <u>dispersed throughout</u>
 <u>the power grid</u>
 - Services (for application management, fault tolerance, security, time synchronization, coordination, etc.)
 - Development toolkit (for building and deploying apps)

A Reusable Software Platform for Smart Grid

Core RIAPS Concepts: RIAPS System

- RIAPS Nodes: Networked Embedded Computers
- Applications consists of <u>actors</u> that contain <u>components</u>
- Component communicate and interact using well-defined patterns: publish/subscribe + client/server
- Expected scale: ~10^2 nodes

Design: Component Framework

- <u>Software components</u> are the reusable building blocks of applications (actors group them into a single process)
- Components have a state and interact via ports
 - Receiver of messages ('subscriber')
 - Server of client requests
 - Sender of messages ('publisher')
 - Client of servers
- Components are single-threaded: one operation at a time
- Components are triggered by the arrival of a message, a request, or a timer event

 Component triggering logic is encapsulated in a function that can include complex decisions

Benefits: Reusable components + concurrency is handled in the framework (not in the 'business logic') + lends itself to timing analysis

Design: Component Framework

- Application Deployment and Management
 - Function: Remotely installs and manages apps

Benefit: Authoritative control over all software deployed on the RIAPS network.

- Discovery: The Broker Service
 - The 'matchmaker/housekeeper' how the components/actors of an app find each other on the

Benefit: Actors of a RIAPS app can come and go at any time – they are still able to connect to the group reliably.

- Discovery: The Broker
 - A fault-tolerant distributed database where component register themselves and look up other components

- Publishers ←→ Subscribers + Clients ←→ Servers
- Implementation: distributed hash table

- Time Synchronization
 - Maintains a cluster-wide synchronized notion of time
 - Applications can: (1) query the global time, (2) sleep until a specified point in time, (3) query the status of the service
 - Architecture:
 - Use PTP (IEEE-1588)
 - Some nodes may have a GPS
 - GPS clock is distributed
 - Fallback: NTP
 - Accuracy: ~10 usec

Benefit: Precisely synchronized time base available to all apps on the RIAPS network.

Device interface

 Encapsulates 'power system devices' that use specific protocols (e.g. Modbus, DNP3, IEC 61850etc.) and hardware interfaces (RS-232, TCP/IP, etc.) and provides a (RIAPS-compliant) messaging interface to the device

Device interactions:

- ▶ Sporadic input: sensor reading at an arbitrary time TU-Remote Terminal Unit DIFF Option Track Recorder Parties United Parties Par
- Periodic input: periodic sensor reading (stream)
- Sporadic output: actuator command at an arbitrary time
- Periodic output: actuator periodically updated
- Scheduled output: actuator is updated at a specific point in time

Benefit: Portable applications – device dependencies are encapsulated in the service.

- Distributed coordination
 - For coordinating applications distributed on the network
 - Features:
 - Group membership: join/leave group, query membership, get notified when membership changes
 - Leader election: elect a leader for centralized functions, when leader becomes unavailable elect another one automatically
 - Distributed consensus: participants agree on a 'value'
 - Time-coordinated action: execute a control action on many nodes simultaneously (up to time synchronization accuracy)
 - Algorithms: Paxos/RAFT

Benefit: Reusable implementation of difficult algorithms – available as a service.

- Resource management
 - Keeps track of resource usage (CPU, memory, files space, I/O)
 - Manages quotas and access
 - Signal errors/terminates applications if resource restrictions are violated
- Logging
 - Efficient, low-overhead logging of events in apps and managers
 - Global management of all logs
- Persistence
 - Efficient, low-overhead database for node-local real-time data
 - Global management of the database
- Fault management
 - Monitors apps/managers/system for faults
 - Mitigates fault effects (e.g. automatic restart, checkpoint, etc.)
- Security management
 - Secure information flows among app components
 - Global management of security keys

Benefit: Complex housekeeping functions – apps don't need to implement them.

Design: Model-driven Development

- Goal: Average software developers are productive in developing complex RIAPS apps
- Developers build:
 - Application 'business logic' the algorithms
 - Models to represent the components and their composition to form an app
- Toolchain generates:
 - Intermediate code, software engineering artifacts
- Model-based toolchains are effective (Simulink/Stateflow)
 - But they are 'closed' and not suited for distributed systems

Benefits: Developer can focus on the core logic of the application (the 'algorithms') – the composition and configuration is done on a higher-level of abstraction.

Design: Model-driven Development

Approach:

- Use a simple, text-based language for the models (diagrams, if needed, can be rendered automatically)
- Integrated it with the code-based IDE (Eclipse) where the application logic is entered (as C++ code)

Develop code generators and integrate them into the IDE (for a

seamless workflow)

Prototype: Eclipse

Application1: Response Based Remedial Action Scheme (WSU)

- RAS is a key mechanism to protect electric power grid, generally used as the last line of automatic defense
- Existing RAS are pre-determined, inflexible and do not factor in changing system conditions and might take control actions good for small system but not optimal for the overall power grid
- RIAPS will enable dynamic coordinated response based RAS (DCRB-RAS), which will use measurements, changing network conditions, control settings to dynamically decide control decisions

Application1: Response Based Remedial Action Scheme (WSU)

Two applications:

RAS I for managing wind generation: curtailment

Data acquisition actor: Protocol conversion, periodic and event data input,

time stamping, buffer input data, time aligning

DLSE actor: Noise filtering, bad data, topology processing, WLS

RAS actor: Initialization, obtain state variable, optimization,

solution update, generate control actions

RAS II for under-frequency control: load shedding

Application2: Microgrid Islanding (NCSU)

- Application of interest: Formation and interactions of microgrids on a distribution feeder
- Focus: power management
- Main application scenario:
 - Unplanned transition from grid-connected to islanded mode and re-synchronization.

 Distributed control and protection framework will be used to implement a fast transition scheme

Demo of an Early Prototype: Synchronization Application

https://riaps.isis.vanderbilt.edu/blog/

Project Summary

Expected outcomes

- The platform will enable developers sanctioned by utilities - to build reusable components and applications
- The platform specification and its prototype implementation is open source, but industrial partners will provide software development services for it
- A new open standard that will change how software for the smart grid is developed

Resilient Information Architecture Platform for the Smart Grid

