TRACK 4: Industrial and Metallic Toxicology

A NEW CHALLENGE: ASSESSMENT of Metallic Toxicity

INTRODUCTION (Environmental exposure)

- Cobalt is a hard lustrous, gray metal
- Cobalt is naturally found in rocks, soil, water, plants, animals

INTRODUCTION (Environmental exposure)

- Cobalt is present in trace amounts in human diet -(fish, vegetable, drinking water ...)

PHYSIOLOGY

- cobalt is a part of vitamin B 12 (necessary for neurological function, brain function, and blood formation...)
- Require for oxygen transport in metabolism

USES

- cobalt containing products include corrosion and heat resistant alloys (metal industries)
- hard metal alloy:
 - → cobalt tungsten carbide

OTHER USES

- magnet
- grinding/ cutting tools
- pigments / paint
- colored glass
- catalyst / batterie
- cobalt coated metal
- surgical implants

OCCUPATIONAL EXPOSURE

- hard metal industry
- diamond polishing
- ceramic industry

INDUSTRIAL PROCESS

- First step: forming wolfram carbide (WC) from the ore
- WC is then milled to fine powder
- secondly mixed with metallic cobalt (size 1 2 mm)

INDUSTRIAL PROCESS

- mixed powder is pressed to obtain desired shapes
- after heated under pressure to 1000 °
- this « product » could be drilled
- finelly heated again (1500°C)

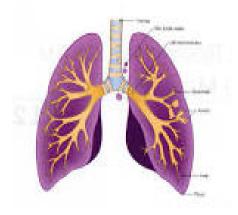
pieces obtained are ground to very exact shapes
 (material is very hard and only diamond grinders can be used)

Mechanism of cobalt toxicity

- high affinity for sulfhydryl groups
- inhibition of crucial enzymes (oxidative phosphorylation)
- inhibition and competition with calcium binding
- generation of oxygen species
- direct cyto-toxicity

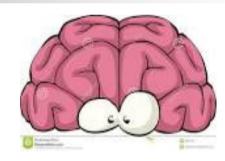

Effects of cobalt on cells

- inhibit osteoblast function
- reducing alkaline phosphatase activity
- inducing secretion of proteins IL8 and MCP (osteoblasts)


Chronic systemic exposure

- accumulation liver
- accumulation Kidney

Adverse effects of cobalt and pulmonary diseases (intertitial fibrosis)


- tightening of the chest
- cough
- shortness of breath
- fatigue
- production of sputum
- weight loss

Adverse effects of cobalt

- neurological symptoms
 - → severed headaches
 - → cognitive decline
 - → memory difficulties (remembering names)
 - → poor concentration
 - → depression

Adverse effects of cobalt

- metal taste in the mouth
- anorexia
- weight loss

Adverse effects of cobalt

- hearing loss
- visual changes
- arrhythmias and cardiopathy
- endocrine symptoms (hypothyroïdism ...)
- abnormal lymphocyte function

Adverse effects

- releasing micro particulate metal debris :
 - → development of pseudotumors
 - → hypersensitive reaction
 - → nanoparticles consequences
 - * cytotoxic
 - * genotoxic
 - * immunological (vigilance after long latency)

Hip prostheses

- conventional total hip prostheses:
 - → metal head
 - → fits into polyethylene cup
 - (but with time require revision)

Hip prostheses

- metal on metal bearing (made with cobalt and chromium)
- release a variety of metal ions into :
 - → local tissue
 - → general circulation

Metal hip assessment

- well fixed (x-rays)
- well aligned implant
- mild osteopenia around acetabular component

Case report

- 60 years old women
 - total hip prosthesis containing cobalt
 - three years ago

Case report clinical symptoms

→ none symptom

Case report routinebiomonitoring

- Blood cobalt level : 3.2 ug/l
 (non exposed population < 0.6 ug/l)
- 2) Blood cobalt level : 4.64 ug/l (three months later)
- 3) Blood cobalt level increases: 8.29 ug/l (patient with cobalt hip: 7 ug/l)

References biomonitoring

- Problem from: 60 ug / l (up to 100 times that of physiologic levels)

- 40 % eliminated within first 24 hours
- 70 % eliminated within one week
- 80 % eliminated one month
- 90 % eliminated one year

Treatment of cobalt toxicity

- No consensus
- To treat the systemic symptoms:
 - * thyroid replacement therapy
 - * beta-blockers
 - * angiotensin-converting......

(no established indication for chelation therapy)

Conclusion

- No current consensus regarding managment of patients with cobalt alloy, hip prostheses and elevated circulating cobalt metal ion levels
- Removal of implanted hardware if:
 - * endocrinopathy
 - * cardiopathy
- (persistance of neurologic symptoms)
- Improved surveillance is needed