The optoelectronic team at a glance

OPTOELECTRONICS LAB

F. Grillot (Head)

(PhD)

H. Huang

(PhD)

(PhD)

- Semiconductor Lasers
- Non-linear photonics and dynamics of Semiconductor lasers

(Postdoc)

- Physics and simulation of semiconductor lasers
- Advances quantum optoelectronics based on q-dot, q-cascade gain media as well as on micro-ring, plasmonics and hybrid silicon semiconductor lasers

Quantum Cascade Lasers (QCLs)

Ultrafast Intersubband transitions

Accessible wavelengths : mid-infrared (4-12µm) up to THz (30µm-1mm)

- Cascade effect : one electron produces several photons
- Ultrafast carrier dynamics

Motivations are to understand the nonlinear dynamical features of QCLs

Refs : C. Sirtori, C. R. Physique **4**, 639 (2003) C. Gmalch et al., Rep. Prog. Phys. **64** ,1533 (2001)

Forced Semiconductor Lasers

Injection-locking

Improvements from nonlinear dynamics

- Single-mode operation
- Reduced spectral linewidth
- Ultra-low noise oscillator
- Improved static (threshold, efficiency) and dynamical ____ properties (modulation bandwidth)
- Reduced filamentation
- Four wave mixing

→ Applications in spectroscopy, DIRCM & free space communications

T.B. Simpson, J.M. Liu, K.F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclass. Opt., vol. 9, pp. 765-784, 1997

Optics-2014, Sept. 08-10 Philadelphia, USA, 2014

State-of-the-art

Only a few studies on optical feedback mostly theoretical!

- Extended cavity regime
- Impact of the linewidth enhancement factor on optical feedback
- Optical feedback & noise properties

TOPICAL REVIEW

External cavity quantum cascade laser

Andreas Hugi, Richard Maulini and Jérôme Faist

Institute of Quantum Electronics, ETH Zurich, Switzerland E-mail: hugia@phys.ethz.ch and jerome.faist@phys.ethz.ch

Received 31 January 2009, in final form 14 February 2010 Published 2 July 2010 Online at stacks.iop.org/SST/25/083001

Intrinsic stability of quantum cascade lasers against optical feedback

F. P. Mezzapesa,^{1,2,*} L. L. Columbo,^{1,3} M. Brambilla,^{1,2} M. Dabbicco,^{1,2} S. Borri,¹ M. S. Vitiello,⁴ H. E. Beere,⁵ D. A. Ritchie,⁵ and G. Scamarcio^{1,2}

¹CNR-IFN UOS Bari, via Amendola 173, I-70126 Bari, Italy
²Dipartimento Interateneo di Fisica, Università degli Studi e Politecnico di Bari, via Amendola 173, I-70126 Bari, Italy
³Dipartimento di Scienza ed Alta tecnologia, Università dell'Insubria, via Valleggio 11, 22100 Como, Italy
⁴NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
⁵Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK
^{*}francesco.mezzapesa@uniba.it

Quantum cascade laser intensity noise under external feedback conditions estimated from self-mixing method

T. Inoue, K. Tsushima, S. Mori and K. Kasahara

Experimental investigation of high-frequency noise and optical feedback effects using a 9.7 μ m continuous-wave distributed-feedback quantum-cascade laser

Damien Weidmann, Kevin Smith, and Brian Ellison

Optics-2014, Sept. 08-10, Philadelphia, USA, 2014

Delayed equations for self-injected QCLs

Device characteristics

Experimental results (optical spectra, regimes, etc.)

Optical injection-locking

Conclusions & perspectives

Optics-2014, Sept. 08-10, Philadelphia, USA, 2014

Rate Equation Model for QCLs

Ref: Y. Petitjean et al., IEEE J. Sel. Top. Quantum Electron. 17, 22 (2011)

Optics-2014, Sept. 08-10,

Philadelphia, USA, 2014

$$\frac{dE(t)}{dt} = \frac{1}{2} \left(1 + j\alpha_H \right) \left(N_{pd} G_0 \Delta N - 1/\tau_p \right) E(t)$$
QCL's linewidth
enhancement factor (LEF)

III-V lab

ELECOM

Delayed Differential Equations

Delay is incorporated into the electric field equation

$$\frac{dE(t)}{dt} = \frac{1}{2} \left(1 + j\alpha_H \right) \left(N_{pd} G_0 \Delta N - 1/\tau_p \right) E(t) + k_c \sqrt{R_{ext}} \exp(-j\theta) E(t - \tau_{ext})$$

$$\frac{dS}{dt} = \left(N_{pd}G_0\Delta N - 1/\tau_p\right)S + \beta N_{pd}\frac{N_3}{\tau_{sp}} + 2k_c\sqrt{R_{ext}}\sqrt{S(t)S(t - \tau_{ext})}\cos\left(\theta + \phi(t) - \phi(t - \tau_{ext})\right)$$

$$\frac{d\phi}{dt} = \frac{\alpha_H}{2} \left(N_{pd} G_0 \Delta N - 1/\tau_P \right) - k_c \sqrt{R_{ext}} \sqrt{\frac{S(t - \tau_{ext})}{S(t)}} \sin\left(\theta + \phi(t) - \phi(t - \tau_{ext})\right)$$

$$k_{c} = \frac{1}{\tau_{in}} \frac{1 - R_{1}}{\sqrt{R_{1}}} \qquad \begin{array}{l} \tau_{in} \rightarrow \text{roundtrip time in the laser cavity} \\ R_{1} \rightarrow \text{the facet reflectivity} \\ R_{ext} \rightarrow \text{feedback ratio} \\ \phi(t) = (\omega_{s} - \omega_{0})t \qquad \Theta = \omega_{0} \times \tau_{ext} \rightarrow \text{feedback phase} \\ S(t) = \left|E_{s}\right|^{2} \qquad \begin{array}{l} \omega_{0} \rightarrow \text{solitary laser frequency at threshold} \\ \tau_{ext} \rightarrow \text{roundtrip delay of the external cavity} \end{array}$$

Recent Advances in Optically-Injected Effects Quantum Cascade Lasers III-V lab

TELECOM ParisTech

Steady-State Solutions (I)

Solutions \rightarrow external cavity modes

$$S = \frac{N_{pd}}{1/\tau_{p} - 2k_{c}\sqrt{R_{ext}}\cos(\omega_{s}\tau_{ext})} \frac{1}{\tau_{32}(\tau_{31} + \tau_{21})} \left[\tau_{31}(\tau_{32} - \tau_{21})\frac{\eta I}{q} - \frac{\tau_{32} + \tau_{31}}{N_{pd}G_{0}} \left(\frac{1}{\tau_{p}} - 2k_{c}\sqrt{R_{ext}}\cos(\omega_{s}\tau_{ext}) \right) \right]$$

$$N_{3} = \frac{\tau_{31}\tau_{21}}{\tau_{31} + \tau_{21}} \left[\frac{\eta I}{q} + \frac{1}{N_{pd}G_{0}\tau_{21}} \left(\frac{1}{\tau_{p}} - 2k_{c}\sqrt{R_{ext}}\cos(\omega_{s}\tau_{ext}) \right) \right]$$

$$N_{2} = \frac{\tau_{31}\tau_{21}}{\tau_{31} + \tau_{21}} \left[\frac{\eta I}{q} - \frac{1}{N_{pd}G_{0}\tau_{31}} \left(\frac{1}{\tau_{p}} - 2k_{c}\sqrt{R_{ext}}\cos(\omega_{s}\tau_{ext}) \right) \right]$$

$$M_{2} = \frac{\tau_{31}\tau_{21}}{\tau_{31} + \tau_{21}} \left[\frac{\eta I}{q} - \frac{1}{N_{pd}G_{0}\tau_{31}} \left(\frac{1}{\tau_{p}} - 2k_{c}\sqrt{R_{ext}}\cos(\omega_{s}\tau_{ext}) \right) \right]$$

$$M_{2} = \frac{\tau_{31}\tau_{21}}{\tau_{31} + \tau_{21}} \left[\frac{\eta I}{q} - \frac{1}{N_{pd}G_{0}\tau_{31}} \left(\frac{1}{\tau_{p}} - 2k_{c}\sqrt{R_{ext}}\cos(\omega_{s}\tau_{ext}) \right) \right]$$

$$M_{2} = \frac{\tau_{31}\tau_{21}}{\tau_{31} + \tau_{21}} \left[\frac{\eta I}{q} - \frac{1}{N_{pd}G_{0}\tau_{31}} \left(\frac{1}{\tau_{p}} - 2k_{c}\sqrt{R_{ext}}\cos(\omega_{s}\tau_{ext}) \right) \right]$$

$$M_{2} = \frac{\tau_{31}\tau_{21}}{\tau_{31} + \tau_{21}} \left[\frac{\eta I}{q} - \frac{1}{N_{pd}G_{0}\tau_{31}} \left(\frac{1}{\tau_{p}} - 2k_{c}\sqrt{R_{ext}}\cos(\omega_{s}\tau_{ext}) \right) \right]$$

$$M_{2} = \frac{\tau_{31}\tau_{21}}{\tau_{31} + \tau_{21}} \left[\frac{\eta I}{q} - \frac{1}{N_{pd}G_{0}\tau_{31}} \left(\frac{1}{\tau_{p}} - 2k_{c}\sqrt{R_{ext}}\cos(\omega_{s}\tau_{ext}) \right) \right]$$

$$M_{2} = \frac{\tau_{31}\tau_{21}}{\tau_{31} + \tau_{21}} \left[\frac{\eta I}{q} - \frac{1}{N_{pd}G_{0}\tau_{31}} \left(\frac{1}{\tau_{p}} - 2k_{c}\sqrt{R_{ext}}\cos(\omega_{s}\tau_{ext}) \right) \right]$$

Antimodes \rightarrow destructive interference (unstable)
 Modes \rightarrow constructive interference (stable)

Optics-2014, Sept. 08-10,

Philadelphia, USA, 2014

8

Steady-State Solutions (II)

- L-I characteristics w/ optical feedback
 - Increase of optical power
 - Threshold reduction
 - Increase of the external quantum efficiency

A proper control of the feedback phase is required!

Optics-2014, Sept. 08-10, Philadelphia, USA, 2014

Recent Advances in Optically-Injected Effects Quantum Cascade Lasers

9

Route to chaos in a semiconductor laser

Complex cascade of bifurcation phenomena towards chaos Chaos in Quantum Cascade Lasers?

Ref: A. Dal Bosco, PhD Thesis, Supelec, France (2013)

Optics-2014, Sept. 08-10,

Philadelphia, USA, 2014

Refs: R. W. Tkach and A. R. Chraplyvy. Journal of Lightwave Technology **4**, 1655 (1986) J. S. Lawrence, PhD Thesis (2000)

Recent Advances in Optically-Injected Effects Quantum Cascade Lasers

Ш

Coherence Collapse

Self-injected interband lasers \rightarrow spectral broadening (coherence collapse i.e chaos)

Ref: F. Grillot et al. IEEE Photon. Technol. Letts. 14, 101 (2002).

- Route to chaos through undamped ROs
- Increase of the spectrum pedestal
- The onset only depends on laser parameters

$$f_{ext,c} = \left[\frac{\omega_r \tau_{in} \sqrt{2}}{(1-R_2)}\right]^2 \frac{1}{1+\alpha^2}$$

No longer valid in class A quantum cascade lasers!

Optics-2014, Sept. 08-10, Philadelphia, USA, 2014

Hopf bifurcation line

- Route to chaos is ensured through the Hopf bifurcation that changes a fixed point to a limit cycle
- Hopf bifurcation is predicted with DDE-Biftool for various time delay

QCLs are much more stable than interband lasers!

Philadelphia, USA, 2014

Device characteristics

- InAs/GaInAs/InP DFB laser@ 5.6 µm QCL
- Dimensions : 2 mm x 9 μ m (R_{max}=99%, N_{pd}=30)
- Top metal grating for single-mode emission $\kappa = 4 \text{ cm}^{-1}$
- I_{th}=433 mA ; η=0.23 mW/mA@283K

Au	Opper Cadding - Imp
-	Active Area : AllnAs/GalnAs
-	Lower Cladding : InP

Courtesy of Dr. M. Carras (III-V Lab)

Refs: A. Evans et al., Appl. Phys. Lett. 84, 314 (2004) M. Carras et al., Appl. Phys. Lett. 96, 161105 (2010)

Optics-2014, Sept. 08-10, Philadelphia, USA, 2014

Optical feedback on LCC

- Reduction of the laser threshold (up to 4% for the case under study)
- Larger optical output power under proper controlled feedback
- Increase of the injection current → modification of the refractive index → undulations due to interferences between ECMs with longitudinal modes of the laser cavity

Ref : R. Lang and K. Kobayashi. IEEE J. Quantum Electron. 16, 347 (1980)

FTIR observations (1)

17

FTIR observations (2)

FTIR observations (3)

Quantum Cascade Lasers

FTIR observations (4)

Philadelphia, USA, 2014

FTIR observations (5)

Philadelphia, USA, 2014

FTIR observations (6)

Regime IV is unstable and does exhibit a strong increase of the spectrum pedestal Wavelength(μm)

The first cartography

- Transitions between regimes occur at higher feedback ratios in QCLs
- Range of feedback rates for regime IV is much narrower than in interband lasers

ELECOM

Injection-locking rate equations

Injected field is incorporated into the electric field equation

$$\frac{dS}{dt} = \left(N_{pd}G_0\Delta N - 1/\tau_p\right)S + \beta N_{pd}\frac{N_3}{\tau_{sp}} + 2k_c\sqrt{S_{inj}S}\cos\phi$$

$$\frac{d\phi}{dt} = \frac{\alpha_{H}}{2} \left(N_{pd} G_{0} \Delta N - 1/\tau_{p} \right) - \Delta \omega_{inj} - k_{c} \sqrt{\frac{S_{inj}}{S}} \sin \phi$$

Injection ratio: $R_{inj} = S_{inj} / S_{FE}$ Detuning frequency: $\Delta \omega_{inj} = \omega_{master} - \omega_{slave}$ Phase difference:

$$\Delta \phi = \phi_{slave} - \phi_{master}$$

Steady state, numerical integration, continuation methods

III-V lab

Stable-locked regime

Locking range is larger for QCLs w/ a zero detuning case always stable!

Due to the ultrafast carrier lifetime, both bistable and unstable regimes exhibit in the injection-locking diagram

Refs: C. Wang, F. Grillot, J. Even, Optics Letters, **38**, 1975, 2013 C. Wang, F. Grillot, J. Even, Journal of Applied Physics, **113**, 063104, 2013

Small-signal analysis of the rate equation

$$I(t) = I + i_{1} \exp(j\omega t) \qquad N_{x}(t) = N + n_{x} \exp(j\omega t)$$

$$S(t) = S + s_{1} \exp(j\omega t) \qquad \phi(t) = \phi + \varphi_{1} \exp(j\omega t)$$

$$\begin{bmatrix} \gamma_{11} + j\omega & -\gamma_{12} & 0 & -\gamma_{14} & 0 \\ -\gamma_{21} & \gamma_{22} + j\omega & 0 & -\gamma_{24} & 0 \\ -\gamma_{31} & -\gamma_{32} & \gamma_{33} + j\omega & 0 & 0 \\ -\gamma_{41} & -\gamma_{42} & 0 & \gamma_{44} + j\omega & -\gamma_{45} \\ -\gamma_{51} & -\gamma_{52} & 0 & -\gamma_{54} & \gamma_{55} + j\omega \end{bmatrix} \begin{bmatrix} n_{3} \\ n_{2} \\ n_{1} \\ s_{1} \\ \varphi_{1} \end{bmatrix} = \frac{\eta i_{1}}{q} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

 $H(\omega) = \frac{s_1(j\omega)}{i_1(j\omega)} = \frac{p_1 p_2 p_3 p_4 p_5}{z_1 z_2 z_3} \frac{\prod_{k=1}^{3} (j\omega - z_k)}{\prod_{k=1}^{5} (j\omega - p_k)} Z_1 = k_c \sqrt{S_{inj} / S} (\cos \Delta \phi - \alpha_H \sin \Delta \phi) Z_2 = 1 / \tau_{32} - 1 / \tau_{21} Z_3 = -1 / \tau_{out}$

ELECOM

Refs: C. Wang, F. Grillot, J. Even, Optics Letters, 38, 1975, 2013 C. Wang, F. Grillot, J. Even, Journal of Applied Physics, 113, 063104, 2013

Modulation response

Large injection strength & frequency detuning enhance the 3-dB bandwidth

- No dip exhibits in the modulation response
- Positive detuning leads to resonance behavior
- Optical injection-locked experiment is now needed for further investigations

→ but strong optical isolation of the master is required !

Main conclusions & perspectives

- Nonlinear dynamics of QCLs is at the early stages
- Self injected QCLs are much more stable (high feedback level for the first Hopf bifurcation)

Experimental study

- First spectral observation
- First cartography of the feedback regimes
- Regime IV is unstable with a smaller area
- Broader areas for stable regimes

Future work

- Electrical spectra & time series to analyze regime IV (chaos)
- Influence of the LEF
- Laser linewidth
- Comparison DFB and Fabry-Perot lasers
- Optical injection-locking experiments

Optics-2014, Sept. 08-10, Philadelphia, USA, 2014 Recent Advances in Optically-Injected Effects Quantum Cascade Lasers

III-V lab

