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Main Idea – Theoretical Purpose

To propose a New lifetime model for multivariate survival data with a cure

fraction

Which is developed under the presence of m types of latent

competing risks and a proportion of survival individuals.

For inferential purposes we use of Markov Chain Monte Carlo

(MCMC) methods to develop a Bayesian analysis for the proposed

model.

Via a Simulation Study, we observed that the frequentist coverage

probabilities of credible interval derived from the posteriors are close

to the nominal.

Francisco Louzada (ICMC-USP) New Multivariate Survival Model Biometrics-Biostatistics 2015 2 / 66



Main Idea – Practical Purpose

The modeling is motivated by a real dataset on medical area:

The medical data is on diabetic retinopathy
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Introduction

Introduction

Survival models incorporating a cure fraction, often referred to as

cure rate model, are becoming increasing popular in analyzing data

from cancer clinical trials.

Modelling failure time data for various types of cancers:

Breast cancer,

non-Hodgkings lymphoma,

leukemia,

prostate cancer,

melanoma,

Head and neck cancer.
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Introduction

Example

Example (1.1)

Kersey et al. (1987), analyzed a set of leukaemia data, which recorded the

the times to recurrence of leukaemia for patients after one of the two

transplants: allogeneic (Group 1, with 46 patients) or autologous (Group

2, with 44 patients).
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Figure: Kaplan–Meier of Leukaemia data– Exemplo-1.1 .
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Introduction

Example

Example (1.2)

Maller and Zhou (1996), presents a set of survival time following surgery

of 45 patients with breast cancer stratified into two groups.
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Figure: Kaplan–Meier of breast cancer data: Group 1=(negative staining),Group

2=(positive staining) – Exemplo-1.2 .
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Introduction Motivation

Motivation

In survival and reliability we may also observe two lifetimes (or even

more) for a same subject.

Examples:

Medical area – lifetimes of matched human organs, as kidneys and

eyes, and double recurrence of a certain disease.

Industrial area – systems whose duration times depend on the

durability of two components. Examples: damage of dual generators

in a power plant or the lifetime of motors in a twin-engine airplane.

Financial area – lifetimes of two types of insurances or two different

credit products for the same client.
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Introduction Motivation

The Presence of Correlation

It is usual to observe dependence on bivariate survival data.
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Introduction Motivation

Interest

Bivariate survival data

Let (T1,T2) be the lifetimes until the occurrence of an event of interest.

Interest

To study the dependence between T1 and T2
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Introduction Diabetic retinopathy study

The diabetic retinopathy study

Diabetic retinopathy is a leading cause of blindness worldwide.

It is estimated that blindness is 25 times more common in people with

diabetes than in those without the disease.

Francisco Louzada (ICMC-USP) New Multivariate Survival Model Biometrics-Biostatistics 2015 14 / 66



Introduction Diabetic retinopathy study

The diabetic retinopathy study

The main endpoint is severe visual loss in each eye.
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Introduction Diabetic retinopathy study

The diabetic retinopathy study

The main endpoint is severe visual loss in each eye.

Obstructing the vision.
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Introduction Diabetic retinopathy study

The diabetic retinopathy study

Interest: Verify the effectiveness of the treatment (laser photo

coagulation) in delaying the onset of blindness.

The treatment was randomly assigned randomly to one eye of each

patient
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Introduction Diabetic retinopathy study

The diabetic retinopathy study

Dataset: The Diabetic Retinopathy Study Research Group (1976)

Nuñes, Tanaka and Pedroso de Lima (2006)

One eye randomly received the treatment.

The other eye was considered as a control.

Censoring was caused by death, dropout or end of the study.

Total of 197 patients were considered in the study.

The subjects could be censored, which happened for 73% of the

treated eyes and 49% of the untreated eyes.

Age was considered as a covariate to create two groups, with a cutoff

point of 20 years (58% of the subjects were less than 20-years-old).
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Introduction Diabetic retinopathy study

The diabetic retinopathy study
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Introduction Diabetic retinopathy study

The diabetic retinopathy study
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Introduction Diabetic retinopathy study

Some Review – Formulation

There are two prevalent formulations of cure rate models in the

literature.

The Standard Mixture Cure Model (Boag, 1949; Berkson & Gage,

1952), where the number of causes of the event of interest is a binary

random variable on {0, 1},
The Promotion Time Cure Model (Yakovlev & Tsodikov, 1996), where

this number follows a Poisson distribution.

Although extensions of cure rate models were developed, limited

attention has been paid to the research on multivariate cure rate

models.
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Introduction Diabetic retinopathy study

Some Review – Approaches

In the frequentist framework, extensions of the standard mixture cure

model:

Chatterjee & Shih (2001) proposed a marginal approach using bivariate

copula models.

Price & Manatunga (2001) imposed frailty to account for correlation

and conducted the maximum likelihood estimation under a parametric

model assumption.

In the Bayesian approach, Chen et al. (2002) generalized the work of

Yakovlev & Tsodikov (1996) to multivariate failure time data by

introducing a positive stable frailty.

Louzada et al. (2013) proposed bivariate long-term distribution based

on the Farlie-Gumbel-Morgenstern copula model.
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Introduction Diabetic retinopathy study

Our Proposal

We propose a new lifetime model for multivariate survival data in

presence of surviving fractions and examine some of its properties.

Its genesis is based on situations in which there are m types of

unobservable competing causes, where each cause is related to a time

of occurrence of an event of interest.

Our model is a multivariate extension of the univariate survival cure

rate model proposed by Tsodikov et al. (2003) and Rodrigues et al.

(2009).
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Introduction Diabetic retinopathy study

Practical Motivation – Diabetic Retinopathy Study

Presence of:

long term survivals

competing severe visual loss causes & which are latent

Although the cause of severe visual loss may be latent, we can

conjecture some possible competitive causes (Fong, et al. 1999) for

it:

1- Vitreous or preretinal hemorrhage

2- Macular edema or macular pigmentary changes related to macular

edema

3- Macular or retinal detachment

4- Neovascular glaucoma

5- Retinal detachment
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Model formulation

The Model

For an individual in the population, let Nk (k = 1, . . . ,m) be the

random variable that denotes the unobservable number of causes of

type k of the event of interest for this individual.

We assume that N = (N1,N2, . . . ,Nm) follows a multivariate Poisson

distribution with probability mass function

P [N1 = n1, . . . ,Nm = nm] = e−{
∑m

i=1 θi}
m∏
i=1

θnii
ni !

s∑
i=0

m∏
j=1

(
nj
i !

)
i !

(
θ0∏m
i=1 θi

)i

(1)

where nj = 0, 1, . . . , θj > 0, j = 0, 1, . . . ,m and s = min{n1, . . . , nm}.
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Model formulation

The Model

The multivariate distribution in (1) allows for positive dependence

between the two random variables.

Marginally each random variable follows a Poisson distribution with

E (Nj) = θj + θ0

and

Cov(Ni ,Nj) = θ0,

for i 6= j = 1, . . . ,m.

Hence θ0 is a measure of dependence between the two random

variables.
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Model formulation

The Model

The time for the jth competing cause of type k to produce the event

of interest is denoted by Zkj , k = 1, . . . ,m, j = 1, 2, . . . .

Given Nk = nk , the Zk1 . . . ,Zknk are independent and identically

distributed random variables with cumulative distribution function

Fk(·) = 1− Sk(·).

The observed times to event are defined by the random variables

Yk = min {Zk0,Zk1, . . .ZkNk
}

with P(Zk0 =∞) = 1, k=1,2,. . . ,m.
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Model formulation

The Model

Under this setup we can demonstrate, that the population survival

function for Y = (Y1, . . . ,Ym) is given by

Spop(y) = exp

{
−

m∑
i=1

θi (1− Si (yi ))− θ0(1−
m∏
i=1

Si (yi ))

}
. (2)

The survival function Spop(y) in (2) is not a proper survival, that is,

limy1,...,ym→∞ Spop(y) = exp {−
∑m

i=0 θi} > 0 (the joint cure fraction).

Note that when θ0 = 0 in (2), the joint survival function reduces to

the product of m independent survival functions.
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Model formulation

The Model

From (2) the marginal survival functions are

Spop(yk) = exp {−(θk + θ0)Fk(yk)} , k = 1, . . . ,m. (3)

Equation (3) indicates that the marginal survival function has a cure

rate structure with probability of cure p0k = e−θk−θ0 for Yk ,

k = 1, . . . ,m.

It is important to note in (3) that each marginal survival function has

the structure of the promotion time cure model (Yakovlev &

Tsodikov, 1996; Chen et al., 1999).
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Model formulation

The model

In (3) that each marginal distribution has a proportional hazards

structure as long as the covariates, only enter through θk and θ0.

The marginal hazard function is given by, (θk + θ0)fk(yk) which

satisfies the conditions for the proportional hazards model (Cox &

Oakes, 1984).

This is a desirable feature of the proposed model that leads to

attractive theoretical properties.
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Model formulation

The Model – The Bivariate Case – Local measure of

association

Without loss of generality, considering the bivariate distribution of

(Y1,Y2), then joint survival function is given by

Spop(y1, y2) = exp {−θ1(1− S1(y1))− θ2(1− S2(y2))− θ0(1− S1(y1)S2(y2))} .
(4)

The parameter θ0 is a measure of association between (Y1,Y2).

As θ0 → 0, this implies less association between (Y1,Y2) which can be seen

from (4).
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Model formulation

The Model – The Bivariate Case

Following Clayton (1978) and Oakes (1982), we can compute a local

measure of association, denoted by ϑ∗(Y1,Y2), as a function of θ0.

This measure of association is defined as

ϑ∗(Y1,Y2) =
Spop(y1, y2) ∂2

∂y1∂y2
Spop(y1, y2)(

∂Spop(y1,y2)
∂y1

)(
∂Spop(y1,y2)

∂y2

) . (5)
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Model formulation

The model – The Bivariate Case

For the bivariate cure rate model in (3), ϑ∗(y1, y2) is well defined and

is given by

ϑ∗(y1, y2) = 1 + θ0 {[θ1 + θ0S2(y2)] [θ2 + θ0S1(y1))]}−1 . (6)

We see that ϑ∗(y1, y2) in (6) increases in (y1, y2). That is, the

association between (y1, y2) is less when (y1, y2) are small and the

association increases over time.
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Model formulation

y1
y2

theta(y1, y2)

y1

y2

theta(y1, y2)

Figure: Local measure of association for model with θ1 = 0.2, θ2 = 0.3, θ0 = 0.2

(left panel) and θ0 = 2 (right panel)
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Model formulation

The following Theorem is a generalization of the proposed model in

(2) and provides a natural extension of the univariate survival cure

rate models.

Theorem (1)

Let N = (N1,N2, . . . ,Nm) be a random vector with probability gener-

ating function, ϕN(w1, . . . ,wm) and random vector Y = (Y1, . . . ,Ym)

defined above. Then the joint survival function of Y is given by

Spop(y) = ϕN(S1(y1), . . . ,Sm(ym)). (7)
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Inference

Inference for the bivariate survival cure rate model

Let us consider the situation when the failure times (Y1,Y2) are not

completely observed and are subject to right censoring.

Let Cki denote the censoring time of k component, k = 1, 2.

Suppose that (Y1i ;Y2i ) and (C1i ;C2i ) are independent.

For each individual i , observed quantities are represented by the

random variables tki = min{Yki ,Cki} and δki = I (Yki < Cki ), which

denotes a censorship indicator, k = 1, 2, i = 1, . . . , n.
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Inference

Let xki (k=1,2,) denote the vectors of covariates for the i th individual.

Extending our model, we propose to relate the parameters θ1i and θ2i

of the bivariate Poisson distribution to the covariates by the

logarithmic link

log (θ1i ) = x>1iβ1 and log (θ2i ) = x>2iβ2, (8)

where βk = (βk1, . . . , βkpk )> is the vector of regression coefficients

associated with the covariates xki .
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Inference

Now with the expression (8) we can express the likelihood of

ϑ = (β1,β2,γ1,γ2, θ0) under non-informative censoring as,

L(ϑ|D) =
n∏

i=1

Spop(t1i , t2i )
2∏

k=1

[fk(tki |γk)]δki

× [θ0 + (θ2i + θ0S1(t1i |γ1))(θ1i + θ0S2(t2i |γ2))]δ1iδ2i

× (θ1i + θ0S2(t2i |γ2))δ1i (1−δ2i )(θ2i + θ0S1(t1i |γ1))δ2i (1−δ1i ),

(9)

where Spop(t1, t2) is survival function given in (4) and fk(tki |γk) and

Sk(tki |γk), k = 1, 2 are density and survival functions of the Weibull

distribution.
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Inference Prior and Posterior

Prior and Posterior

The normal distribution and gamma distribution with a as shape and

b as scale (and mean a/b) are denoted by N(µ, σ2) and G (a, b) .

In this context we assume that βk , k = 1, 2, γk1, γk2 and θ0 are a

priori independent, that is,

π(ϑ) =
2∏

k=1

π(βk)π(γk1)π(γk2)π(θ0), (10)

where βk ∼ Npk (0,Σk0), γk1 ∼ G(ak0, bk0), γk2 ∼ N1(0, σ2
γk2

)

k = 1, 2 and θ0 ∼ G(a0, b0).
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Inference Prior and Posterior

Prior and Posterior

Combining the likelihood function (9) and the prior distribution in

(10), the joint posterior distribution for ϑ is obtained as

π(ϑ|D) ∝ L(ϑ|D)
2∏

k=1

π(βk)π(γk1)π(γk2)φ(θ0).

This joint posterior density is analytically intractable.

Thus the computational problem can be easily handled by using

MCMC methods for sampling from the posterior distribution.

Francisco Louzada (ICMC-USP) New Multivariate Survival Model Biometrics-Biostatistics 2015 42 / 66



Inference Prior and Posterior

Prior and Posterior

The full conditional distributions of βk , γk = (γ1k , γ2k) and θ0 as

π(βk | ·) ∝ exp[−
n∑

i=1

θkiFk(tki |γk)]
n∏

i=1

∆i Λki π(βk), k = 1, 2, (11)

π(γ1 | ·) ∝ exp[−
n∑

i=1

(θ1iF1(t1i |γ1)− θ0S1(t1i |γ1)S2(t2i |γ2))]

×
n∏

i=1

f1(t1i |γ1)∆i Λ2iπ(γ1),

(12)
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Inference Prior and Posterior

π(γ2 | ·) ∝ exp[−
n∑

i=1

(θ2iF2(t2i |γ2)− θ0S1(t1i |γ1)S2(t2i |γ2))]

×
n∏

i=1

f2(t2i |γ2)∆i Λ1iπ(γ2),

(13)

and

π(θ0 | ·) ∝ exp[−θ0S1(t1i |γ1)S2(t2i |γ2))]
n∏

i=1

Λ1i ∆i Λ2i π(θ0), (14)

where ∆i = [θ0 + (θ2i + θ0S1(t1i |γ1))(θ1i + θ0S2(t2i |γ2))]δ1iδ2i ,

Λ1i = (θ1i + θ0S2(t2i |γ2))δ1i (1−δ2i ) and Λ2i = (θ2i + θ0S1(t1i |γ1))δ2i (1−δ1i ).

Francisco Louzada (ICMC-USP) New Multivariate Survival Model Biometrics-Biostatistics 2015 44 / 66



Inference Prior and Posterior

We then implement a Metropolis-Hasting algorithm within Gibbs

iterations (Chib & Greenberg, 1995).

For example, to implement the Metropolis-Hastings algorithm for the

parameter θ0, we consider a target distribution gθ0(θ0) = π(θ0|·), and

under given model, θ0 > 0 we consider the transformation

θ0 = exp(η), where, −∞ < η <∞.

Then, gη(η) = gθ0(η)eη.

Instead of directly sampling θ0, we generate η by choosing a normal

proposal N(η̂, σ2
η̂) where η̂ is the maximizer of the logarithm of gη(η)

and σ2
η̂ is the minus of the inverse of the second derivative of

logarithm of gη(η) evaluated in η = η̂.
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Inference Prior and Posterior

The algorithm

The algorithm to generate η operates as follows:

(1) let η be the current value;

(2) generate a point η∗ from N(η̂, σ2
η̂) ;

(3) a move from η to η∗ is made with probability

min

1,
gη(η∗)φ

(
η−η̂
ση̂

)
gη(η)φ

(
η∗−η̂
ση̂

)
 ,

where φ(·) is the standard normal probability density function.

After we sample η we obtain θ0 = eη.
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Simulation Study

Simulation – General Specifications

Aiming 1: To evaluate the asymptotic properties of the parameter

estimates for the proposed cure rate model.

Aiming 2: To analyse the frequentist coverage probabilities of credible

interval derived from the posteriors
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Simulation Study

Simulation – General Specifications

In this study we consider the bivariate cure rate model with the

Weibull distribution for the event time (Zkj , k = 1, 2, j = 1, 2, . . . .),

with parameter, γk1 = 1.4 and γk2 = 2.0.

For each individual i , i = 1, . . . , n, the number of causes of the event

of interest for this individual (N1,N2) is generated from the bivariate

Poisson distribution with parameter θ0 = 0.5, θ1i = exp(β10 + β11xi )

and

θ2i = exp(β20 + β21xi ), where β10 = −1.6, β11 = 1.3, β20 = −1.5,

β21 = 1.1 and the covariates xi are generated from a Bernoull

distribution with parameter 0.5.
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Simulation Study

Simulation – General Specifications

The censoring times Cki are sampled from the uniform distribution on

the interval (0, τk ), where τk is set in order to control the proportion

of censored observations.

In this study the proportion of censored observations was on an

average approximately equal to 55% and 50% respectively.
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Simulation Study

Simulation – General Specifications

The sample sizes are taken as n = 200 and 400.

For each simulated data set, the posterior summaries and 95% HPD

intervals of the model parameters were obtained.

80,000 MCMC posterior samples are generated for each paramenter,

from which 20,000 iterations are eliminated for obtaining a sample of

size 50,000.

The autocorrelation of these sampled values are reduced by taking a

spacing of size 10, thus resulting in a final sample of size 6,000.
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Simulation Study

Simulation – General Specifications

For each configuration, we conduct 500 replicates and then we

determine from the estimates of each parameter, the average (AE),

the root mean square error (RMSE) and the coverage probability

(PC).
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Simulation Study

Simulation – Results

Table: Simulation results with 500 replications of the posterior summaries.

Parameter

n β10 β11 γ11 γ12 β20 β21 γ21 γ12 θ0

200 AE -1.489 1.201 2.018 1.409 -1.482 1.060 2.030 1.410 0.489

SD 0.348 0.381 0.155 0.161 0.368 0.345 0.154 0.153 0.068

RMSE 0.368 0.401 0.156 0.163 0.373 0.361 0.157 0.1549 0.072

PC 0.942 0.943 0.949 0.942 0.953 0.950 0.948 0.949 0.945

400 AE -1.592 1.283 2.008 1.391 -1.501 1.010 2.021 1.403 0.502

SD 0.268 0.252 0.133 0.130 0.368 0.256 0.143 0.139 0.034

RMSE 0.269 0.254 0.137 0.131 0.373 0.258 0.145 0.141 0.034

PC 0.951 0.948 0.952 0.948 0.948 0.951 0.949 0.951 0.952
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Application The diabetic retinopathy data

The diabetic retinopathy data

The diabetic retinopathy study (Huster et al., 1989) of time of

blindnes in each eye of the 197 diabetic patients with diabetic

Retinopathy.

One eye of each patients was randomly selected for treatment (the

effectiveness of laser photo coagulation in delaying the onsets of

blindness) and other eye was observed without treatment.

A binary age covariate (0 for juvenile and 1 for adult) is available.

The first component of the bivariate survival time is the time of the

blindness on the treated eye (Y1) and the second component is the

similar time for the untreated eye (Y2).

Francisco Louzada (ICMC-USP) New Multivariate Survival Model Biometrics-Biostatistics 2015 55 / 66



Application The diabetic retinopathy data

For model fitting the following independent priors are adopted in the

Bayesian computations βkj ∼ N(0, 104), k = 1, 2 and j = 0, 1,

γk1 ∼ G(1, 0.01) and γk2 ∼ N(0, 104).

80,000 MCMC posterior samples are generated for each parameter,

from which the 20,000 iterations are eliminated for obtaining a

sample of size 60,000.

The autocorrelation of these sampled values are reduced by taking a

spacing of size 10 thus resulting in a final sample of size 6,000.
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Application The diabetic retinopathy data
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Figure: Sequence plots of the chains
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Application The diabetic retinopathy data

Table: Posterior summaries of the parameters for the bivariate cure rate model for

the diabetic retinopathy data set.

95%HPD

Time to blindness Parameter Mean Standard Desviation LI LS

Treated eye γ11 1.869 0.2217 1.473 2.335

γ12 -1.934 0.2633 -2.440 -1.420

β10 -1.449 0.347 -2.129 -0.776

β11 -1.216 0.8207 -2.854 0.380

Untreated eye γ21 1.746 0.165 1.443 2.101

γ22 -2.112 0.2113 -2.529 -1.699

β20 -0.563 0.221 -0.997 -0.129

β21 0.488 0.251 -0.012 0.976

θ0 0.247 0.064 0.145 0.393
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Application The diabetic retinopathy data
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Application The diabetic retinopathy data

Table: Posterior summaries of the cured fraction stratified by juvenile and adult

patients.

95%HPD

Eye Patient Mean Standard Desviation LI LS

Treated Juvenile 0.611 0.053 0.498 0.704

Adult 0.710 0.063 0.565 0.805

Untreated Juvenile 0.430 0.059 0.320, 0.551

Adult 0.309 0.060 0.195 0.428

Francisco Louzada (ICMC-USP) New Multivariate Survival Model Biometrics-Biostatistics 2015 60 / 66



Application The diabetic retinopathy data
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Figure: Posterior density estimates for the cure rates corresponding to treated eye

(left panel) and untreated eye (rigth panel) patients.
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Final Comments

Final Comments

The new lifetime model for multivariate survival data

Incorporates in to the analysis important characteristics of the

problem:

long term survivals

latent competing default causes

The estimation procedure of the proposed model is straightforward

via Bayesian Inference.

The results of this study have been condensed in a paper accepted for

publication in the Journal of Statistical Computation and Simulation

(JSCS).
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Final Comments

THANK YOU FOR YOUR ATTENTION !!!
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