About OMICS Group

OMICS Group is an amalgamation of **Open Access** worldwide international publications and science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes 500 online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men Research and women. Scholars, Students. Libraries. Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 500 International <u>conferences</u> annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

About OMICS International Conferences

OMICS International is a pioneer and leading science event organizer, which publishes around 500 open access journals and conducts over 500 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

Apolipoprotein E4 Mediated Targeting of Blood Brain **Barrier Using Nano-Micellar Metal Chelators for Treatment of Alzheimer's Disease**

Assist. Prof. Dr. Fatemeh Bahadori

What is Alzheimer's disease (AD)?

Alzheimer's disease is an irreversible, progressive brain disease that slowly destroys memory and thinking skills.

Although the risk of developing AD increases with age – in most people with AD, symptoms first appear after age 60 – AD is not a part of normal aging. It is caused by a fatal disease that affects the brain.

Alzheimer's Disease

- AD is the most common cause of dementia among people age 65 and older.
- Scientists estimate that around 4.5 million people now have AD.
- For every 5-year age group beyond 65, the percentage of people with AD doubles.

By 2050, 13.2 million older people are expected to have AD if the current numbers hold and no preventive treatments become available.

Inside the Human Brain

Neurons

- The brain has billions of neurons, each with an axon and many dendrites.
- To stay healthy, neurons must communicate with each other, carry out metabolism, and repair themselves.
- AD disrupts all three of these essential jobs.

Plaques and Tangles: The Hallmarks of AD

The brains of people with AD have an abundance of two abnormal structures:

beta-amyloid plaques, which are dense deposits of protein and cellular material that accumulate outside and around nerve cells

neurofibrillary tangles, which are twisted fibers that build up inside the nerve cell Loss of Connection Between Neurons

Amyloid Plaque

> Cleaved Beta Amyloid

Disintegraing Microtubule Neurofibrillary Tangle

Beta-amyloid Plaques

- 1. APP sticks through the neuron membrane.
- 2. Enzymes cut the APP into fragments of protein, including beta-amyloid.
- **3.** Beta-amyloid fragments come together in clumps to form plaques.

In AD, many of these clumps form, disrupting the work of neurons. This affects the hippocampus and other areas of the cerebral cortex.

Alzheimer's Disease

$A\beta$ is a bi valent metal depot

Cu (~400 µM) Zn (~1 mM) Fe (~1 mM)

- Zn at concentrations of 300 nM can rapidly destabilize Aβ and lead to fibril formation
- Free Cu is extremely efficient in the generation of free radicals and has been shown to induce partial aggregation of Aβ
- The increase of Fe in this microenvironment possibly could catalyze further free radical generation, thus leading to an increase in Aβ fibril

There are two logic ways to prevent binding of metals to proteins

- First of which is to find a compound that has more affinity to proteins than metals. However in practice it is impossible to design such compounds since Aβ is shapeless in the absence of metals.
- The second way is to find compounds with affinity to metals.

Second solution is actually to use the metal chelators in treatment of AD.

- Although there are number of metal chelators which are used in the treatment of metal deposition disease since long years ago approved by FDA, non of them is suitable to use in the treatment of AD due to their neurotoxicity effect.
- The more important, all of known metal chelators are hydrophilic which means they are not able to cross Blood Brain Barrier (BBB).

There is currently no cure for most forms of dementia including AD.

Pharmacotherapy is focussed on symptomatic benefit and slowing disease progression, but a number of possible disease modifying and preventive strategies based on current understanding of AD pathophysiology are under investigation.

Before the development of modern medicine people relied on a large arsenal of natural remedies for the treatment of CNS related maladies. In western societies, here has been increasing interest in herbal medicines, which are often perceived as a more 'natural' and 'soft' treatments compared to synthetic drugs.

There are very few reports on natural metal chelators and this is where synthetic metal chelators are neurotoxic.

Although there are quit much reports on metal chelating activity of natural sources, almost all of them are based on only chelating Fe⁺² and very few of them report the chelating activity against all divalent metals: Fe⁺², Cu⁺² and. Zn⁺². However latter metal ions are more important in treatment of AD.

The word chelation is derived from Greek χηλή, *chēlē*, meaning "claw"

Chemically, the chelating agent is claw shaped and attacks a positively charged metal and surrounds it making it inactive and eventually removes it from the body.

Both synthetic and natural product studies on metal chelators done since now, gave us very precious data about structure-activity relationship of these compounds. Me Me. Me. 0 QН 3° OH. M M 1-b в 1-a 2-a HO Me. \mathbf{C} 6° 3 `ОН 0 5 Me ÓН \cap Me M Quercetin 2-b 2-d 2-c CH_{3} $CH_{\mathfrak{Z}}$

H H H H

Curcumin

	Extracts	Total	Total		ME:1.8g	67	50	Malva neglecta	PE:300mg	90	15
	EARDOLD	Phenolic	Flavonoid		WATER:	61	50	örnek-33	AC:400mg	91	20
Astragalus leporinus	PE:800mg	92	16		U:var				ME:	68	16
	AC:1.3g	92	20	Carlina corymbosa	PE:2.8g	200	46		WATER:	65	12
	ME:10g	90	16		AC:1.1g	88	49		U:var		
	WATER:	90	11		ME:6g	98	49	Capsela bursa-	PE:1.2g	129	16
Astragalus	PE:600mg	68	48		WATER:	133	52	postaris	AC:800mg	90	20
schizopterus	AC:800mg	17	61		U:var				ME:	71	16
	ME:9.1g	46	45	Onopordum	PE:1.8g	148	13		WATER	78	14
	WATER:	83	51	polycephalum	AC:2.1g	142	18		U:var		
Astragalus dissmutus	PE:530mg	110	10		ME:4g	117	13	Achillea cappadocica	PE:800mg	90	47
	AC:300mg	110	18		WATER	101	12	2 10 11 20 30000000000	AC 1 1g	98	48
	ME:5g	84	12		Ulwar				ME:2.8a	102	40
	WATER	74	10	Openerdum	DE-2.7a	122	11		WATED.	02	50
Contouron	DE-900mg	125	14	conduction	AC:1.0a	110	12		Ubyok	82	50
branifalia	AC:2.8a	115	17	carducilorum	AG. 1.8g	110	12	Circle without	DE-800mm	75	40
iyoopiiolia	A0.2.0g	110	17		ME:2g	108	11	Sidentis Disection Labili	PE:000mg	/0	40
	ME.8.1g	80	12		WATER	140	14	moanooca Labiii.	AU.	148	50
	WATER	127	12		U:var	0/	12	waterbsp.	ME:3.8g	112	50
Centaurea baisamita	PE:050mg	112	11	Carduus	PE:7.2g	154	11	Lineans	WATER:	131	49
	AC:5.2g	117	14	pyncephalus	AC:3.4g	110	19		U:var	<u> </u>	<u> </u>
	ME:12g	151	15	waterbsp. abidus	ME:30g	103	12	Anchusa	PE:800mg	117	18
	WATER:	205	18		WATER:	562	11	arvensis waterbsp.	AC:300mg	105	28
Verbascum	PE:500mg	151	28		U:var	65	11	Orientalis	ME:2.6g	116	16
pinetorum	AC:1g	586	31	Gundelia tournefortii L.	PE:2g	144	10		WATER:	125	13
	ME:5g	304	16	var. tournefortii	AC:1.8g	202	18		U:var		
	WATER:	350	25		ME:2.4g	148	16	Tropogon latifolius	PE:1.5g	153	49
	U:çokvar	67	11		WATER:	153	18	waterbsp angustifolius	AC:1.5g	106	49
Verbascum flavidum	PE:290mg	146	47		U:var				ME:2.5g	84	49
	AC:450mg	128	66	Trifolium	PE:670mg	123	50		WATER:	92	47
	ME:5g	232	50	angustifolium	AC:330mg	114	65		U:var		1 1
	WATER:	97	51	waterbsp	ME:4.5mg	71	48	A - 1 - 20	PE:700mg	102	15
Veronica thymodies	PE:1.4g	93	46	angustifoliu	WATER:	102	49	Achiliea wilnemsi	AC:1.7g	85	14
pseudocier	AC:1.1g	19	52		U:var	+			ME:4.5g	116	18
	ME:4.3g	248	47	Scolymus	PE:2.4mg	137	11		WATER:	126	18
	WATER:	360	51	haspanicum	AC:1g	105	17		U:vok		
Stachys thirkei	PE:9a	146	47		ME:4.1g	225	14	Silene Compacta	PE:1a	94	48
	AC:1.1a	95	58		WATER	144	17		AC:1.1g	120	47
	ME:3.8g	187	50		Urvar		<u> </u>		ME:8a	81	48
	WATER	106	53	Alcee nellide	PE-1.5g	132	14		WATER:	77	40
	PE-850mg	112	47	, noca panda	AC:2.1a	175	20		Utvar	+	<u> </u>
melissa oficinalis	AC:14a	118	50		ME:10g	107	13	Puliceria dysenterice	PE-1.2n	137	48
waterbsp altisima	ME:2.1g	300	48		WATED.	152	12	r diloana dysemenoa	AC:	107	58
	WATER:	317	50		WATER	100	12		ME:Ba	270	50
Colustagia ciluation	PE-1.4a	101	14	Alcea antorecomo	DE-2.6a	125	11		WE.00	120	40
Calystegra silvauda	AC:1.1g	151	18	CICCE BUCCUSEUSE	AC:1e	120	24		WATER	120	10
	ME1.7~	101	10		AGing	08	44	Polloto ninco	DE-260mm	121	18
	ME1./g	133	13		ME.	80		pariota nigra	AC:1-	131	10
Lhun ani au m	DE-4.2-	1/3	44		WATER:	110		waterosp. Anatona	Actig	114	32
Hypericum	PE:4.2g	112	44	No. of the second se	U:var	- 140			ME:	90	20
capitatum	AG:2.1g	00	4/	Alcea setosa	PE:1.2g	149	33		WATER:	113	13
	ME:0g	210	53		AC:1.2g	80	40	Mahar Marata - K	U:Var	110	10
	WATER:	189	50		ME:2.5g	01	49	Malvella sharardiana	PE:s00mg	110	18
	U:Var	- 107			WATER:	79	49		AC:600mg	96	21
Sedum sediforme	PE:9g	137	11		U:var				ME:	87	16
	AC:1.1g	254	23	Alcea hohencharkei	PE:1g	135	50		WATER:	85	12
	ME:7.2g	336	17		AC:800mg	32	65		U:var		
	WATER:	185	16		ME:3.7g	106	48				
Cordorio drobo	DE-700mg	1.83	47		WATER	63	48				
Galuella ulaba	FE.700mg	00				00	10				

Studied plants consisted of

- Astragalus leporinus,
- Astragalus schizopterus,
- Astragalus distinctissimus,
- Centaurea lycopifolia,
- Centaurea balsamita,
- Centaurea Iberica,
- Centaurea diffusa,
- *Centaurea urvillei* subsp. *urvillei,*
- Verbascum flavidum,
- Stachys thirkei,

1

• *Melissa officinalis* subsp. *officiinalis,*

- Calystegia silvatica,
- Hypericum capitatum,
- Hypericum triquetrifolium,
- Sedum sediforme,
- Cardaria draba subsp. draba,
- Carlina corymbosa,
- Pulicaria dysenterica,
- Onopordum polycephalum,
- Onopordum carduchorum
- Gundelia tournefortii L. var. tournefortii,
- Scolymus hispanicus,
- Rosmarinus officinalis

Fe⁺² Chelating was measured using Decker and Welch (1990)'s method with basic modifications to correct the deviations raised from extract's colour

The extracts were added to a solution of 2 mM FeCl2 (100 IL). The reaction was initiated by the addition of 5 mM ferrozine (200 IL). The mixture was shaken vigorously and left standing at room temperature for 10 min. After the mixture reached equilibrium, the absorbance was determined at 562 nm. EDTA was used as a reference compound.

Murexide is used in analytical chemistry as a complexometric indicator for complexometric titrations and as a colorimetric reagent for measurement of calcium and rare earth metals

Cu⁺² Chelating Activity of *Verbascum flavidum*

Zn⁺² Chelating Activity of *Verbascum flavidum*

PDTC and Alzheimer

3712 • The Journal of Neuroscience, April 4, 2007 • 27(14):3712-3721

Neurobiology of Disease

Pyrrolidine Dithiocarbamate Activates Akt and Improves Spatial Learning in APP/PS1 Mice without Affecting β-Amyloid Burden

Tarja M. Malm,¹ Henna Iivonen,¹ Gundars Goldsteins,¹ Velta Keksa-Goldsteine,¹ Toni Ahtoniemi,¹ Katja Kanninen,¹ Antero Salminen,^{2,4} Seppo Auriola,³ Thomas Van Groen,² Heikki Tanila,^{1,4} and Jari Koistinaho^{1,5} ¹A. I. Virtanen Institute for Molecular Sciences and Departments of ²Neuroscience and Neurology and ³Pharmaceutical Chemistry, University of Kuopio, and Departments of ⁴Neurology and ⁵Oncology, Kuopio University Hospital, FIN-70211 Kuopio, Finland

Tight Junctions in Blood Brain Barrier

Passing Trough BBB

Copyright © 2005 Nature Publishing Group Nature Reviews | Neuroscience

Receptor Mediated Endocytosis

Biodegradable Poly Lactide-co-Glycolide (PLGA, 50:50)

Apolipoprotein E-4 and its Role in Alzheimer's Disease

Nature Reviews | Neuroscience

Hydrodynamic Size of PLGA Particles

No significant changes happen upon loading plant extracts or synthetic compound

Apo E-4 incorporated PLGA Particles

Jala sink

			Size (d.n	% Intensity:	St Dev (d.n
Z-Average (d.nm):	139,8	Peak 1:	150,7	100,0	41,54
Pdl:	0,074	Peak 2:	0,000	0,0	0,000
Intercept:	0,939	Peak 3:	0,000	0,0	0,000
Result quality	Good				

Stability of PLGA Nano-Particles

Advances in Neurotherapeutic Delivery Technologies

Chapter-4

Edited by Viness Pillay Yahya E Choo

NanoVectors for Neurotherapeutic Delivery Part I: Liposomes and Micelles

Tansel Comoglu¹ and Fatemeh Bahadori²

¹Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100, Tandogan, Ankara, Turkey ²Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 34093, Fatih, Istanbul, Turkey

Metal Protein Aattenuating Activty

A- Tris Base pH= 7.4 $A\beta 1-42 + CuCl_2 \rightarrow 1 H., 37^{\circ}C \rightarrow Aggregation$ Aggregates are visible under microscopeB- $A\beta 1-42 + CuCl_2 + EDTA \rightarrow 1 H., 37^{\circ}C \rightarrow Aggregation$ + Verbascum flavidum extract+ Rosmarinus officinalis extract

+ PDTC

→ Centrifuge → measure the protein amount in supernatant usning SDS-PAGE

C- a) $A\beta$ 1-42 + CuCl₂ \rightarrow 1 H., 37°C \rightarrow Aggregation

b) +EDTA or +V.f or +Ro or +PDTC

→ Centrifuge → measure the protein amount in supernatant usning SDS-PAGE

Results of SDS-Page

BEZMIÂLEM

- Verbascum flavidum and Rosmarinus officinalis are promisng Metal Chelators while Ro is the more trustable one because of its well known toxicity profile
- Pyrrolidine Dithiocarbamate (PDTC) is a very convenient compound to establish more investigagtions on it in the frame of Alzheimer's disease treatment
- Both natural and synthetic metal chelators show better activity in prevention of Alzheimer's disease than in treatment of it

THANKS

Ph.D. Candidate Burak Çelik and Grad. Student Fatma Kazdal

Let Us Meet Again

We welcome you all to our future conferences of OMICS International

Please Visit:

http://integrativebiology.conferenceseries.co m/ http://conferenceseries.com/ http://www.conferenceseries.com/geneticsand-molecular-biology-conferences.php