Buckling Capacity of Pretwisted Steel Columns: Experiments and Finite Element Simulation

Farid Abed & Mai Megahed
Department of Civil Engineering
American University of Sharjah
Sharjah, U.A.E.
Outline

- Introduction and Background
- Previous Studies
- Elastic Buckling Analysis using Perturbation Analysis
- Experimental Tests
- Nonlinear Finite Element Analysis
- Remarks and Conclusions
Introduction and Background

Pretwisting

- Steel structures are increasingly used in constructions as they proved to be more user- and environmental-friendly.
- Columns usually buckle along the plane of least resistance. However, the column resistance varies at each point along its centroidal axis when its section is permanently pretwisted.
- During buckling, the deformed configuration of the pre-twisted column is no longer perpendicular to the axis of least resistance. This will result into nonlinear differential equations, which describe the equilibrium of the member, whose solution is not simple.
Introduction and Background

Effect of Pretwisting

- Inducing a natural pretwist along the length of a column section makes the column have a different resistance at every point along its centroidal axis.

- Transition between the two flexural planes (minor and major) varying the direction of weak resistance at every point along the column’s length.

- This research work aims at throwing the light on the potential improvement in the buckling capacity of pre-twisted UC-section steel columns.
Insufficient theoretical and experimental works were found in the literature on the study of buckling of pre-twisted members. Mainly, analytical studies to derive exact solution and model the stability and static performance of pretwisted rods and beams.

Recent experimental and numerical studies by Abed and his co-workers to investigate the buckling capacity of pretwisted bars.

Abed et al. (2012) Barakat and Abed (2010)
Previous Studies

Buckling strength ratio and the critical stress sharply increase as the angle of twist increase up to 90 degrees for lower slenderness ratio (KL/r ≤ 144).

A model that predicts the buckling behavior of pretwisted bars was developed within range up to 90°.

\[
P_{cr}^{\text{Pretwisted}} = \left(1 + \frac{\phi_P}{360}\right)^4 P_o \quad \text{when } \frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}}
\]

\[
P_{cr}^{\text{Pretwisted}} = \left(1 + \frac{\phi_P}{360}\right)^{2.2} P_o \quad \text{when } \frac{KL}{r} \leq 4.71 \sqrt{\frac{E}{F_y}}
\]

Abed et al. (2012)
Elastic Buckling Analysis using Perturbation Analysis

Linear Finite element analysis

A range of pretwisted angles between 0 and 180 was investigated for each section.
Buckling of pretwisted columns is solved numerically using linear perturbation analysis technique that is already implemented in the finite element software ABAQUS.

The linear perturbation analysis step is created such that the response can only be linear, estimating elastic buckling by the use of Eigen value extraction.

The key point in an Eigen value problem is making the model stiffness matrix singular, an incremental load pattern, whose magnitude is not of great importance, will be scaled by the load multipliers λ_i such that the Eigen value problem can be defined by the following equation:

$$(K_0^{NM} + \lambda_i K_{\Delta}^{NM})u_i^M = 0$$

where u^M is the displacement vector and K_{Δ}^{NM} is the tangent stiffness matrix that is related the differential loading pattern while K_0^{NM} corresponds to the initial loading condition.

The superscripts M and N are the degrees of freedom for the whole system while the subscript i denotes the i^{th} buckling mode.
Mesh Sensitivity Analysis

- 4-node 3D shell elements of S4R ABAQUS type were utilized
- Different Mesh configurations were checked to select a proper element size to obtain the desired level of accuracy with the least computational time.
Elastic Buckling Analysis using Perturbation Analysis

Model Verification

- FE results for straight (untwisted) columns were verified against Euler Buckling Equation.

![Graph 1](image1.png)

![Graph 2](image2.png)
Elastic Buckling Analysis using Perturbation Analysis

Results for **Fixed-ended B.C.s**

- Length has no effect
- 70 – 90 % buckling capacity improvement at angle of twists between 120-150.
Elastic Buckling Analysis using Perturbation Analysis

Results for **Fixed-ended B.C.s**

- Histograms of Buckling improvement versus slenderness ratio up to $\phi = 150^\circ$
Results for **Fixed-ended B.C.s**

- Comparisons with previous equation that was developed for pretwisted bars with rectangular cross-sections.

\[
p_{cr}^{pretwisted} = \left[1 + \frac{\phi}{360}\right]^nP_0.
\]

when \(\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}}\)

Abed et al. (2012)
Results for **Fixed-ended B.C.s**

Finite element analysis run for 0°-360° under fixed-ended boundary condition
Elastic Buckling Analysis using Perturbation Analysis

Results for Pinned-ended B.C.s

- Length has no effect
- No significant buckling capacity improvement up to 180 angle of twist.

Buckling modes of pin-ended columns (a) non-boxed, $\phi=90^\circ$, (b) boxed, $\phi=180^\circ$.

UC100X100X17

- Pretwist Angle, ϕ° vs. Buckling Improvement (%)
- Length has no effect
- No significant buckling capacity improvement up to 180 angle of twist.

UC150X100X21

- Pretwist Angle, ϕ° vs. Buckling Improvement (%)
- Length has no effect
- No significant buckling capacity improvement up to 180 angle of twist.
Experimental Tests

Test Setup

- Universal Testing Machine (UTM), capacity = 1200 KN
- UC 100x100x17
Experimental Tests

- Dimensions of UC 100x100x17 considered for testing

<table>
<thead>
<tr>
<th>SECTION</th>
<th>LENGTH (mm)</th>
<th>Flange width (mm)</th>
<th>Total depth (mm)</th>
<th>Flange Thickness (mm)</th>
<th>Web height (mm)</th>
<th>Web thickness (mm)</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL1 T0</td>
<td>1022.0</td>
<td>99.1</td>
<td>102.1</td>
<td>6.9</td>
<td>88.3</td>
<td>6.03</td>
<td>0.0</td>
</tr>
<tr>
<td>CL1 T30</td>
<td>990.0</td>
<td>98.7</td>
<td>102.0</td>
<td>7.7</td>
<td>86.6</td>
<td>6.03</td>
<td>32.4</td>
</tr>
<tr>
<td>CL1 T45</td>
<td>1019.0</td>
<td>99.6</td>
<td>99.1</td>
<td>7.3</td>
<td>84.5</td>
<td>6.03</td>
<td>44.0</td>
</tr>
<tr>
<td>CL1.5 T0</td>
<td>1526.0</td>
<td>98.9</td>
<td>100.5</td>
<td>7.1</td>
<td>86.3</td>
<td>6.03</td>
<td>0.0</td>
</tr>
<tr>
<td>CL1.5 T20</td>
<td>1523.0</td>
<td>98.4</td>
<td>99.9</td>
<td>7.2</td>
<td>85.5</td>
<td>6.03</td>
<td>22.8</td>
</tr>
<tr>
<td>CL1.5 T30</td>
<td>1523.0</td>
<td>99.5</td>
<td>99.5</td>
<td>7.2</td>
<td>85.1</td>
<td>6.03</td>
<td>35.7</td>
</tr>
<tr>
<td>CL1.5 T45</td>
<td>1528.0</td>
<td>98.5</td>
<td>101.2</td>
<td>7.7</td>
<td>85.8</td>
<td>6.03</td>
<td>45.0</td>
</tr>
<tr>
<td>CL2 T0</td>
<td>2022.0</td>
<td>100.0</td>
<td>99.7</td>
<td>7.1</td>
<td>85.5</td>
<td>6.03</td>
<td>0.0</td>
</tr>
<tr>
<td>CL2 T30</td>
<td>2031.0</td>
<td>99.9</td>
<td>100.4</td>
<td>7.2</td>
<td>86.0</td>
<td>6.03</td>
<td>33.7</td>
</tr>
<tr>
<td>CL2 T60</td>
<td>2027.0</td>
<td>91.5</td>
<td>101.7</td>
<td>7.9</td>
<td>85.9</td>
<td>6.03</td>
<td>58</td>
</tr>
</tbody>
</table>
Experimental Tests

1.0 meter Lengths

Load vs. Displacement for 1m-columns

CL1T45

- flange vertical
- flange
- horizontal
- WEB horizontal
- Flange vertical

Load (KN)

Strain (mm/mm)
Experimental Tests

1.5 meter Lengths

![Images of 1.5 meter lengths of material.]

Graphs showing load vs. displacement for 1.5m columns:
- CL1.5T0
- CL1.5T20
- CL1.5T35
- CL1.5T45

Graphs showing load vs. strain for CL1.5T20:
- Flange-vertical
- Flange-horizontal
- Web-horizontal
- Flange-vertical
- Flange-horizontal
Experimental Tests

2.0 meter Lengths

![Experimental Test Setup](image1)

![Graphs of Load vs. Displacement for 2m-columns](image2)

- **CL2T34**
 - Load vs. Strain graph for vertical and horizontal flanges

- **CL2T58**
 - Load vs. Strain graph for vertical flange
Nonlinear Finite Element Analysis

Nonlinear material

- Coupon Tests on 6 specimens from the flange and the web of H-section to define the elasto-plastic behavior of the material.
- Geometric imperfection was also considered.
- Buckling was modeled using two approaches:
 - Riks Analysis
 - Displacement control

<table>
<thead>
<tr>
<th>W₁ (mm)</th>
<th>L₂ (mm)</th>
<th>W₂ (mm)</th>
<th>L₁ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>89</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>
Nonlinear Finite Element Analysis

- **Riks Analysis**
 - Built-upon the results achieved using Linear Perturbation analysis
 - Solves for Load and Deflection simultaneously
 - Accounts for material nonlinearity by implementing the true stress-strain curve of the material

- **Displacement-based General Static Analysis**
 - Load is input in the form of axial displacement at the end that is allowed to translate in longitudinal direction
 - A value of geometric imperfection ranging from L/1000-L/2000 induced as lateral displacement at the column mid-height
Mesh Sensitivity Analysis

Mesh 1 = 50
Mesh 2 = 25
Mesh 3 = 10

- Mesh 1 exceeded 4% for CL1.5T20 and reached around 12% with CL2T0.
- Mesh 2 and Mesh 3 both showed < 0.5% variation.
Nonlinear Finite Element Analysis

Nonlinear FE model Verification

- Experimental and Nonlinear Finite element results compared against the AISC code provisions for the prismatic columns.
- Pretwisted columns simulated through FE analysis

\[\frac{Kl}{r} > 4.71 \sqrt{\frac{E}{F_y}} \], for inelastic column.
Nonlinear Finite Element Analysis

Nonlinear FE model Verification

- Experimental and Nonlinear Finite element results compared against the AISC code provisions for the prismatic columns.
- Pretwisted columns simulated through FE analysis

\[KL/r > 4.71\sqrt{E \frac{F_y}{F_y}} \text{ for inelastic column.} \]

\[KL/r \leq 4.71\sqrt{E \frac{F_y}{F_y}} \text{ for elastic column} \]

\[F_{cr} = \left(\frac{f_y}{f_y} \right) \frac{0.658}{f_y} \text{ for inelastic buckling} \]

\[F_{cr} = 0.877F_e \text{, for elastic columns} \]
Nonlinear Finite Element Analysis

Nonlinear FE model Verification:

- Axial Load versus Displacement:

 - CL1T0
 - CL1.5T0
 - CL2T0

- Axial Load versus Strain:

 - CL1T45
 - CL1.5T30
 - CL2T60
Nonlinear Finite Element Analysis

Expanded Parametric Study

• Fixed-ended models

![Graphs showing the relationship between pretwisting angle and moment of inertia.](image)

![Bar graphs showing the buckling load for different pretwisting angles and KL/r values.](image)

![Plot showing the change in moment of inertia with pretwisting angle.](image)

![Graph showing the buckling improvement for different pretwisting angles and lengths.](image)
Nonlinear Finite Element Analysis

Expanded Parametric Study

- Pinned-ended models

![Graphs showing buckling load and improvement for various models with different parameters.](image-url)
Remarks

- Pretwisting is to be perceived as an effective technique to increase the buckling capacity of any steel compression member.

- Results obtained via Linear Perturbation analysis showed that there is a significant improvement (up to 90%) in the critical buckling capacity for different slenderness ratios. However, the effect of various column lengths on the buckling improvement for a given UC section was insignificant.

- The improvement in the axial capacity of pretwisted UC sections with pinned-pinned ends conditions was found to be very small (only 20%) as compared its fixed-ended counterparts, for the three UC sections used in this study.

- More experimental tests and numerical analysis are deemed necessary to reach a more generalized equation that could accurately predict the critical buckling capacity of pretwisted steel columns.
On the improvement of buckling of pretwisted universal steel columns

Farid H. Abed *, Mai Megahed 1, Abdulla Al-Rahmani 1

Department of Civil Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, UAE

ARTICLE INFO

Article history:
Received 1 August 2015
Received in revised form 21 October 2015
Accepted 29 October 2015
Available online 6 November 2015

Keywords:
Pretwisting
UC sections
Buckling
FE simulation
Columns

ABSTRACT

This paper investigates the improvement in elastic buckling capacity of pretwisted columns using Linear Perturbation Approach. Three different Universal Column (UC) sections of various lengths were considered in the proposed study assuming fixed–fixed and pinned–pinned end conditions. Linear perturbation analysis was first verified by comparing the critical loads of the simulated straight columns with analytical results. Numerical analysis was then extended to simulate the buckling improvement of pretwisted columns considering four different lengths of 4 m, 5 m, 6 m and 7 m, and a range of twisting angles between 0° and 180°. The results showed that the initial twisting has positively impacted the axial capacity of the pretwisted columns. This noticeable improvement is supported by the significant increase in the buckling capacity for the three UC sections, particularly at angles of twists between 120° and 150°.

© 2015 The Institution of Structural Engineers. Published by Elsevier Ltd. All rights reserved.