About OMICS Group

OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes 400 online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 300 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

About OMICS Group Conferences

OMICS Group International is a pioneer and leading science event organizer, which publishes around 400 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Phrama scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

Low Characteristic Temperature Glass Ceramic for LED Lighting

Fan-Bean Wu

Associate Professor and Chairperson Materials Science and Engineering National United University Miaoli, TAIWAN fbwu@nuu.edu.tw

Outline

Introduction

- Experimental Procedure
 Phosphor embedding into softened glass
 Results and Discussion
 Low characteristic temperatures
 Glass structure and bonding
 - Optical performance
- Conclusion

Introduction

- Long life time (~10⁵ hours, even at 50°C still has 4*10⁴ hour)
- Low on/off time ($\sim 10^{-9}$ sec)
- Low power loss
- High shock resistant
- Small size (less than 2 mm)
- Easy focus

- Low flicker
- No pollution
- High monochromatic

Source: http://www.digitalversus.com / Low energy consumption: how to choose your LED lights

Introduction

1.

|立際合大學 FIONAL UNITED UNIVERSITY White light" usually means a multi-color mixed light.

To mix red, green, blue

and light to get a tri-chromatic white light.

 Using blue light and yellow light to obtain a dichromatic white light, two complementary colors combine to form white light.

Critical issues

7

Source : F. Shunsuke, YAG glass-ceramic phosphor for white LED (I)

- The blue LED chip excite light making the temperature of chip increase.
- The epoxy degenerated significantly due to thermal annealing, leading to decrease the life time and luminous efficiency.

Source :C.C Tsai, The Reliability Study of Optical Power and Radiation Pattern for High-Power Light-Emitting Diodes Modules in Aging Test

Critical issues Materials

Higher Power, Enhanced Efficiency, elongated Lifetime ... Applications, like Car, Building, Spotlight, Lighthouse...

Phosphors (Wavelength Converter)

- High excitation in NUV or Blue
- High quantum efficiency
- High color rendering index
- · High thermal stability
- Low scattering loss

Encapsulants (Packaging Materials)

- High refractive index /High VLT
- · High thermal stability
- High UV stability
- Moisture resistant
- Environmental-Friendly/Reworkable

The replacement of polymerbased encapsulate by quality "glass materials"

Challenges

國立際合大學 National United University

For power illumination... Cover Layer Hemi-Sphere Cover Phosphor All Inorganic Solution Containing Glass-ceramic phosphor White light Cavity Blue LED Chip emission **Ce:YAG crystal** Blue LED Chip **Resin matrix free** Deterioration free Glass matrix ? Sheet (tape) phosphor/glass **Blue LED** Good heat-resistance ? High process temperature is expected ? Phosphor "in" glass

? Match in physical/thermal/optical properties like Density, CTE, Refractive Index...

9

Experimental procedures

YAG GCP under Blue light

Glass Ceramics-Phosphor Optical Performance

Glass Ceramics-Phosphor & Phosphor Emission Spectrum

The result shows an intense emission peak at 550 nm for the GCP sample, which is a unanimous result as the YAG phosphors of emission spectra.

YAG GCP by Various Glass Systems

13

Glass Ceramics-Phosphor

Appearances

- Phosphate systems are not well-wetted with phosphors. Shallow incorporation and limited YAG into glasses are detrimental for lighting.
- Borosilicate glasses are chemically stable, yet higher thermal characteristic temperatures are expected.

YAG GCP by Various Glass Systems

14

Glass Substrate Characteristics Measure

Thermal & Optical properties

Glass systems	$T_g(^{\circ}C)$	$T_d(^{\circ}C)$	$T_c(^{\circ}C)$	CTE(10 ⁻⁶ /K)	T_{c} - T_{d} (°C)	Refractive Index	Abbe number
P-40Sr10K	618	661	853	4.5	192	1.616	38.93
P-30Sr20K	579	614	889	6.3	275	1.601	40.29
P-20Sr30K	543	582	917	8.6	335	1.584	45.97
P-25Nb0Li	529	570	905	5.8	335	1.791	27.75
P-20Nb5Li	533	569	856	7.0	287	1.759	32.42
P-15Nb10Li	527	567	794	7.4	227 🖊	1.720	35.15
B-30Zn6Bi	549	586	784	5.9	198	1.774	37.90
B-27Zn9Bi	552	574	775	6.2	201	1.796	34.96
B-24Zn12Bi	547	569	770	6.1	201	1.816	32.03

- The greater T_s and the smaller Td of the glass substrate, leading to a layer operating temperature range $(T_c T_d)$ for the glass ceramic preparation was expected.
- In this study, the glass systems all exhibit a $(T_c T_d)$ over 200 °C, which is quite sufficient in glass ceramic fabrication.

Designed Glass systems

Glass systems	$T_g(^{o}C)$	$T_d(^{\circ}C)$	$T_c(^{\circ}C)$	CTE(10 ⁻⁶ /K)	$T_c - T_d (^{\circ}C)$	Refractive index	Abbe number
50B0Si	464	495	627	6.97	132	1.89	28.32
45B5Si	461	494	684	7.49	172	1.89	26.63
40B10Si	461	489	690	7.86	201	1.89	23.7
35B15Si	466	487	737	6.21	250	1.90	24.02
30B20Si	474	497	738	6.49	241	1.90	26.1
25B25Si	474	499	764	6.55	265	1.90	24.3
15Bi35Zn	483	524	737	6.02	213	1.85	28.32
20Bi30Zn	472	508	684	7.05	176	1.85	27.6
25Bi25Zn	461	494	666	7.49	172	1.88	24.11
30Bi20Zn	455	488	639	7.67	151	1.91	24.36
35Bi15Zn	447	476	626	6.79	150	1.94	22.53

Working range(WR): $T_c - T_d$ (°C) : Glass can be shaped (worked) without devitrification

 \square More NBOs lead to a more relaxed structure when the Bi₂O₃ content increases.

- □ All working ranges are grater than 150°C.
- \square When Bi₂O₃ increases, refractive index increases.
- □ The refractive index of all developed glass systems are greater than 1.85.

Glass structure FTIR spectra

 \square B-O² reflections shift foward low wavenumbers as Bi₂O₃ increases.

16

Molecular absorption spectrometry

17

Bending vibration

Bending vibration means a change in the angle but no change in the length between two bonds at molecular vibration.

• Stretching vibration

- Stretching vibration means the variation in bonding length between two atoms. Atom stretches along bond axis and no change between bond angle.
- Stretching vibrations are divided into two parts: symmetric stretching and asymmetric stretching.

Glass structure Raman spectra

- □ All bonds become stronger with increasing Bi_2O_3 content.
- \square (B-O⁻)_{as} and (Bi-O⁻)_s vibrations get stronger with Bi addition, indicating the increase in NBOs.
- \Box The glass structure becomes relaxed when Bi_2O_3 increases.

國立際合大學 National United University

Structure of Glass systems

*Typical borate structure with boroxol rings. *Stable [BO₃] plane unit dominated. *Further stabilization when other oxides are added to form [BO₄] tetrahedron.

GCP Appearances

20

BiZn-borosilicate at 520°C

- The YAG phosphor embedded into the 35Bi15Zn glass substrate at 520°C for various time.
- As heat treatment time increased, the surface of the GCPs become darker yellow.

5 min

30 min

10 min

90 min

GCP Cross-sectional SEM view

GCP Chemical and Phase Stability

YAG

YAG GCP:35Bi15Zn-borosilicate at 520°C for 90 min Al 5um Bi 5um B 5um —

- EPMA color mapping: showing that YAG phosphor and glass substrate are stable without chemical reaction.
- X-ray patterns: showing a stable
 YAG phase after embedding.

GCP CIE coordinate

YAG GCP:35Bi15Zn-borosilicate at 520°C 0.8 0.7 0.6 0.5 y 0.4 **Omin** 0.3 20min of 60min 30min 0.2 10min 0.1 5min 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 х CIE1931

35Bi15Zn-borocilicate at 520°C for 90min

- The emission lights were turned from blue, light blue and white according to phosphor driven-in depth and distribution.
- The white light could be reached with the YAG embedded 35Bi15Zn borosilicate GCP and the emission light was adjustable by controlling heat treatment time.

Conclusion Remarks

- The developed borosilicate glasses with functional element incorporation, including Bi, Li, Sr, K, Nb, and Zn, exhibit low characteristic temperature and high refractive index and are applicable in fabricating phosphor embedded glass ceramic layer for Phosphor-Conversion LED lighting system.
- The addition of Bi and Zn induces the relaxation of the borosilicate structure and lower down the characteristic temperatures. Furthermore a large working temperature range of 150°C and above can be obtained.
- The phosphor-embedded glass layer with controllable phosphor distribution can be manipulated through heat treatment temperature and time design associated with the softening temperatures of the glass systems.
- The feasibility of the glass ceramic phosphor, GCP, layer on LED lighting package is verified. White light can be approached using GCP/blue-LED with designed phosphor distributed glass system.

Acknowledgement

- This study funded by Ministry of Science and Technology, MOST, Taiwan under contract No. MOST-102-2221-E-239-006-MY3.
- □ The great efforts from lab group and partner, C.K Chang, Y.R. Chung, J.H. Liao, Y.H. Tsai, C.Y. Huang, and Prof. H.W. Yang, are highly appreciated.

and Thank You!

Alet Us Meet Again

We welcome you all to our future conferences of OMICS Group International

Please Visit: http://materialsscience.conferenceseries.com/

Contact us at

materialsscience.conference@omicsgroup.us materialsscience@omicsgroup.com

