2nd World Congress on

Petroleum and Refinery

June 1-3 , 2017 Osaka, Japan

A probabilistic risk assessment of process plants under seismic Loading

<u>Fabrizio Paolacci</u>

OUTLINE

- Introduction
- Proposal of a procedure for QSRA with MPC capacity
- Quantitative Risk Seismic Assessment by MSC
- Software implementation
- Conclusions

 The work presented herein has been partially funded by the Italian RELUIS consortium within the executive research program DPC/ReLUIS 2015 and the European Research Project INDUSE-2- SAFETY (Grant No. RFS-PR13056).

INTRODUCTION

In a world that has a continuous need of petrochemicals, an important role is played by refineries. Once discovered, drilled and brought to the earth's surface, crude oil is transported to a refinery by pipeline, ship or both. At the refinery, it is treated and converted into consumer and industrial products. A petroleum refinery is a complex assembly of individual process plants interconnected with piping and tanks.

Tanks

NATECH EVENTS

Several accidents occurred in the last decades in industrial sites have evidenced that naturals phenomena may cause severe damages to equipment items, resulting in losses of containment, thus in multiple and extended releases of hazardous substances.

Database: MHIDAS

Past accidents analysis evidences that structural damage to the equipment directly struck by lightning is the more frequent cause of loss of containments accidents, but generally seismic events produces severe consequence because increases the likelihood of **multiple and simultaneous failures** of industrial components.

5/51

Typical layout of a Petroleum Refinery

STRUCTURAL CLASSIFICATION OF PLANT COMPONENTS

Structural typology	Critical equipment	Typical seismic observed damages	Other possible damages
Slim vessels	Columns Reactors Chimney Torch	 Leakage of fluid in flanged joints Yielding of anchor bars 	Overturning
Above-ground squat equipment	Big broad tanks with fixed and floating roof	Failure of wall-bottom plate welding Elephant foot buckling Diamond buckling of tank wall Settlements of ground	Uplifting
		Impact of floating roof to tank wall.	Overtopping Torch fire
Squat equipment placed on short columns	Spherical tanks	Collapse of structure due to shear failure of columns	
	Process Furnaces Cryogenic tanks	Collapse of structure due to shear failure of columns Collapse of the chimney Detachment of internal pipes Detachment of the internal refractory material Collapse of structure due to shear failure of columns	Leakage from pipes; Increase of temperature of Furnace wall
Piping systems and support structure	Steel or R.C. frames	Collapse for excessive stresses	Damages to supported equipment (pipes, tanks,)

Paolacci F., Giannini R., De Angelis M., (2013), Seismic response mitigation of chemical plant components by passive control systems, Journal of Loss Prevention in Process Industries, Volume 26, Issue 5, Pages 879-948 Special Issue: Process Safety and Globalization - DOI:10.1016/j.jlp.2013.03.003.

The Kocaeli earthquake caused significant structural damages to the Tupras refinery itself and associated tank farm with crude oil and product jetties and triggered multiple fires in the refinery's naphtha tank farms.

Kocaeli earthquake (Turkey) -17 August 1999 - Magnitudes 7.4

Tupras refinery

- The majority of the floating roof tanks (30 out of 45) were damaged;

- 250.000 m³ crude oil and 100.000 m³ oil product having been exposed to the atmosphere and partially pouring out of the tanks;

- Evacuation order was issued by the crisis centre for a zone of 5 km around the refinery;

- Considerable oil pollution occurred during the incident;

- Total damage is estimated to be around US\$ 350 million.

Lession from the past: Extreme vulnerability of the tank farm, importance of the domino effect, damaging of the services and security systems.

SLIM VESSELS

ABOVE-GROUND STORAGE TANKS

ABOVE-GROUND STORAGE TANKS

Typical Damages in the Floating Roof

ELEVATED STORAGE TANKS

REFINERY PIPING SYSTEMS

NATECH EVENTS: WHAT ABOUT RISK?

- Quantitative Risk Assessment (QRA) is an established method utilized for the calculation of risk in process plants based on the logic of consequence analysis described, for instance, in the "Purple Book".
- This intrinsically probabilistic method has been thought for classical accident conditions in which the damage event and the relevant consequences start from a preselected component and a predefined LOC;
- In presence of **Natech events**, like earthquakes, a multisource condition can be caused by multi-damage conditions (damage in more than one component), which in turn can generate multiple-chains of events and consequences,

NATECH EVENTS: WHAT ABOUT RISK?

In literature several attempts of modifying the classic QRA approach to account for this important aspect have been formalized, but without converging toward a unified approach.

- Cozzani V., et al., 2005, The assessment of risk caused by domino effect in quantitative area risk analysis. Journal of Hazardous Materials, 127:14-30.
- Fabbrocino, G., Iervolino, I., Orlando, F., & Salzano, E. (2005). Quantitative risk analysis of oil storage facilities in seismic areas. Journal of Hazardous Materials, 123(1:3), 61-69.
- Antonioni, G., Spadoni, G. & Cozzani, V., 2007, A methodology for the quantitative risk assessment of major accidents triggered by seismic events, Journal of Hazardous Materials, 147(1-2), 48-59.

The main reason is that the above methods try to assess the overall plant vulnerability due to possible contemporary accident scenarios caused by the release of hazardous materials but <u>fails to include a</u> <u>systematic procedure to analyze chain of accidents and are based on standard data for LOC frequencies</u>

The problem of the uncertainties propagation, intrinsically related to **domino effects** triggered by seismic events, has been analyzed in the past by using different approaches, ranging from **analytical** to **numerical** formulations.

- Busini V., Marzo E., Callioni A., Rota R., (2011), Definition of a short-cut methodology for assessing earthquake-related Na-Tech risk, Journal of Hazardous Materials, Volume 192, Issue 1, 15 August, Pages 329-339.
- Huang Y., Whittaker A.S., Luco N., (2011), A probabilistic seismic risk assessment procedure for nuclear power plants: (I) Methodology, Nuclear Engineering and Design, Volume 241, Issue 9, September.
- Alileche N, Olivier D., Estel L., Cozzani V., (2016), Analysis of domino effect in the process industry using the event tree method, doi:10.1016/j.ssci.2015.12.028

These works often either they are not referred to process plants under seismic action or they are for seismic action but referred to different plants like NPP.

The classical QRA method, described in the Purple book and utilized for the risk assessment of process plants subjected to an industrial accident, basically relies on the following steps:

Multiple chains lead to Domino Effect

NATECH EVENTS: WHAT ABOUT RISK?

In case of **Natech events**, like earthquakes, a multiplicity of chains can be contemporarily triggered and propagated. Therefore, a **series of random initial scenarios** need to be generated and the consequences analysed, including interactions between chains (Multiple levels).

In case of **Natech events**, like earthquakes, a multiplicity of chains can be contemporarily triggered and propagated. Therefore, a **series of random initial scenarios** need to be generated and the consequences analysed, including interactions between chains (Multiple levels). The probability of a given final scenario can be ideally calculated base on the following general integral

P(X|Y) is conditional probability of X given Y

Proposal of a new procedure for QSRA of petrochemical plants

- 1. Classification of plant equipment and identification of the relevant limit states and failure modes triggered by earthquake exposure;
- 2. Seismic Hazard assessment by PSHA and selection of seismic input;
- 3. Derivation of fragility curves of all equipment;
- 4. Determination of the initial damage scenario (level 0)
- 5. Determination of loss of containment (LOC) events for each component damaged by the earthquake according to limit states;
- 6. Estimation of source terms and physical effects for each seismically damaged unit (consequences);
- Evaluation of damage propagation (domino effect), which includes the identification of possible damages caused by the earthquake to the undamaged units and derivation of consequences for the next levels (level > 0) until no further units are damaged and the propagation stops;
- 8. Risk estimation and ranking scenarios.

Proposal of a procedure for QSRA of petrochemical plants

Step 1: Identification of pant components

F. Paolacci, R. Giannini, M. De Angelis, (2013), Seismic response mitigation of chemical plant components by passive control systems, *Journal of Loss Prevention in Process Industries, Volume 26, Issue 5, Pages 879-948 Special Issue: Process Safety and Globalization -* **DOI:10.1016/j.jlp.2013.03.003.**

Structural typology	Critical equipment	Typical seismic observed damages	Other possible damages
Slim vessels	Columns Reactors Chimney Torch	 Leakage of fluid in flanged joints Yielding of anchor bars 	Overturning
Above-ground squat equipment	Big broad tanks with fixed and floating roof	Failure of wall-bottom plate welding Elephant foot buckling Diamond buckling of tank wall Settlements of ground	Uplifting
		Impact of floating roof to tank wall.	Overtopping Torch fire
Squat equipment placed on short columns	Spherical tanks	Collapse of structure due to shear failure of columns	
	Process Furnaces	Collapse of structure due to shear failure of columns Collapse of the chimney Detachment of internal pipes Detachment of the internal refractory material	Leakage from pipes; Increase of temperature of Furnace wall
	Cryogenic tanks	Collapse of structure due to shear failure of columns	
Piping systems and support structure	Steel or R.C. frames	Collapse for excessive stresses	Damages to supported equipment (pipes, tanks)

ROMA TRE UNIVERSITÀ DEGLI STUDI

Step 3: Fragility Curves evaluation

For the purpose, only the damages connected to the leakage of the content are considered fundamentals based on which fragility curves can be built.

Limit State (LS)	Engineering Demand Parameter (EDP)	Damage Measure (DM)		Limit State (LS)	Engineering Demand Parameter (EDP)	Damage Measure (DM)	
Elephant Foot Buckling	Meridional Stress σ _v	Buckling limit σ _{EFP}	Ť	Elephant Foot Buckling	Meridional Stress σ _v	Buckling limit $\sigma_{_{EFP}}$	
Shell fracture	Hoop Stress $\sigma_{\rm H}$	Buckling limit σ _E		Shell fracture	Hoop Stress	Buckling limit	
Sliding	$F_{sliding} = \mu W$	Total Base Shear	-		Max Vertical	U _E	
Overturning	Overturning Moment	Overturning Moment limit		Roof Damage	displacement of liquid	Free-board heigh	
Base plate fracture	Max local strain	Strain limit			- 62	E .	
Roof Damage	Max Vertical displacement of liquid	Free-board height					

Step 3: Fragility Curves evaluation

Step 4: Damage scenarios at level 0

For each component: possibles damage typology are randomly generated, damage typologies are considered independently each other and if more damages occurs, conservatively, is considered the more unfavorable.

Step 5: Determination of LOC events

Several accidents occurred in the last decades evidenced that the impact of seismic events in industrial plants may trigger accidental scenarios involving the release of relevant quantities of hazardous substances.

Step 5: Determination of LOC events

The criteria to estimate risk level of an industrial facility are based on the type of stored material and on the quantity of material release connected to the type and level of damage

Procedure concerns the evaluation of the corresponding LOC conditions. In principle, LS and LOC shall be considered both as random variables. Consequently, the determination of the probability of occurrence of a LOC condition given a certain LS would be necessary. However, in the procedure, this relationship will be considered deterministic.

Step 5: Determination of LOC events

In principle, LS and LOC shall be considered both as random variables. Consequently, the determination of the probability of occurrence of a LOC condition given a certain LS would be necessary. However, in what follows, this relationship will be considered deterministic.

Damage State (DS)	Engineering Demand Parameter (EDP)	Damage State Threshold (LS)	LOC1 Continuous release from a 10mm hole	LOC2 Continuous release from a full bore of the pipe	LOC3 Instantaneous release of full content
Elephant Foot Buckling	Meridional Stress σ _M	Buckling limit σ _{EFB}	No	Yes	No
Diamond Shape buckling	Hoop Stress σ _H	Buckling limit σ_E	Yes	No	No
Sliding	Total Base Shear	$F_{sliding} = \mu W$	No	Yes	No
Overturning	Overturning Moment	Overturning Moment limit	No	No	Yes
Base plate fracture	Max local strain	Strain limit	No	No	No
Roof Damage	Max vertical displacement of liquid	Free-board height	No	No	No

DS/LOC Matrix for anchored tanks

Step 6: Physical Effects

Modelling source terms and dispersion

After having definied the loss of containment events for a **single event**, the source terms and the dispersion in the environmental have to be calculate.

Step 6: Physical Effects

Modelling source terms and dispersion

From an instantaneous or continuous release very different consequence can be developed.

Step 6: Physical Effects

Modelling source terms and dispersion

From an instantaneous or continuous release very different consequence can be developed.

Step 6: Physical Effects

Modelling source terms and dispersion

From an instantaneous or continuous release very different consequence can be developed.

September 29-30, 2016 Rome

Step 7: Damage propagation and domino effect

Logical sequence of domino effect : for each seismically damaged unit, the procedure includes the damage evaluation in the remaining undamaged units.

ROMA TRE A probabilistic risk assessment of process plants under seismic Loading – Fabrizio Paolacci Petroleum and Refinery Conference – 1-3 June 2017 - Osaka

Step 7: Damage propagation and domino effect

Logical sequence of domino effect : for each seismically damaged unit, the procedure includes the damage evaluation in the remaining undamaged units.

Step 7: Damage propagation and domino effect

For each seismically damaged unit, after the quantification of the physical effects (pressure, thermal radiation, etc..) due to a LOC event, the procedure includes the damage evaluation in the remaining undamaged units.

Step 7: Damage propagation and domino effect

The proposed procedure allows three different types of seismic analysis of the plant: scenario, fragility and risk analysis.

- The first approach defines the seismic scenario corresponding to the occurrence of an earthquake with a given magnitude M at a given distance D from the site with soil conditions S (e.g., the most likely event producing a given value of the Intensity Measure (IM) at the site, obtained by a deaggregation analysis); therefore, the outcomes are conditioned to the occurrence of the selected earthquake.
 Differently, the fragility approach consists in calculating the probability
 - of occurrence of damage scenarios and consequence for a given set of IMs. This approach can be adopted to investigate the behaviour of the plant to increasing seismic intensities.
 - Finally, the third approach consists in a complete risk analysis of the plant.

Step 7: Damage propagation and domino effect: Scenario

If a scenario or a fragility analysis is selected, the probability of occurrence of a given damage scenario, conditioned, respectively, to the seismic scenario or a given value of the IM (e.g. PGA) can be calculated with the relation P[S|PGA], where N is the number of simulations and I_i is the indicator function of the event i for a damage d.

Similarly, the expected cost L reads where Cij (dj) indicates the reparing/substitution cost of the j-th unit of the plant that, at the i-th sampling, is subjected to the damage dj; the second summation is extended to all damaged elements

$$P[S | PGA] = \frac{\sum_{i=1}^{N} I(d)}{N}$$

$$C[L \mid PGA] = \frac{\sum_{i=1}^{N} \sum_{j} C_{ij}(d_j)}{N}$$

Step 7: Damage propagation and domino effect: Scenario

If a scenario or a fragility analysis is selected, the probability of occurrence of a given damage scenario, conditioned, respectively, to the seismic scenario or a given value of the IM (e.g. PGA) can be calculated with the relation P[S|PGA], where N is the number of simulations and $I_i(d)$ is the indicator function of the event i for a damage d.

Similarly, the expected cost L reads where Cij (dj) indicates the reparing/substitution cost of the j-th unit of the plant that, at the i-th sampling, is subjected to the damage dj ; the second summation is extended to all damaged elements

$$P[S | PGA] = \frac{\sum_{i=1}^{N} I(d)}{N}$$

Probability of a scenario
$$C[L | PGA] = \frac{\sum_{i=1}^{N} \sum_{j} C_{ij}(d_{j})}{N}$$

Economic losses

N

Step 7: Damage propagation and domino effect: Risk

When the risk analysis option is selected, the Magnitude (m) of the seismic event and the distance (R) of the site form the epicenter or the fault are randomly sampled. The PGA is then determined by using a proper seismic attenuation relationship.

- The Magnitude is sampled by using the Gutemberg-Richetr law
- The distance is sampled from a uniform distribution fuction p=dA/A
- The seismic activity is sampled by assuming a uniform annual rate of occurence

To improve the efficiency of MCS the **importance sampling technique** is used

$$p = \frac{\sum_{i=1}^{N} I(d) w_{Ri} w_{Mi} w_{SZi}}{N}$$

$$w_m = \frac{\beta e^{-\beta m} (m_{\max} - m_{\min})}{e^{-\beta m_{\min}} - e^{-\beta m_{\max}}}$$

$$w_m = \frac{dA(R)}{R}$$

$$w_m = \frac{dA(R)}{R}$$

$$w_m = \frac{dA(R)}{R}$$

$$w_m = \frac{dA(R)}{R}$$

ROMA TRE UNIVERSITÀ DEGLI STUDI A probabilistic risk assessment of process plants under seismic Loading – Fabrizio Paolacci Petroleum and Refinery Conference – 1-3 June 2017 - Osaka

Step 7: Damage propagation and domino effect: Risk

When the risk analysis option is selected, the Magnitude (m) of the seismic event and the distance (R) of the site form the epicenter or the fault are randomly sampled. The PGA is then determined by using a proper seismic attenuation relationship.

- The Magnitude is sampled by using the Gutemberg-Richetr law
- The distance is sampled from a uniform distribution fuction p=dA/A
- The seismic activity is sampled by assuming a uniform annual rate of occurence

To improve the efficiency of MCS the **importance sampling technique** is used

A probabilistic risk assessment of process plants under seismic Loading – Fabrizio Paolacci Petroleum and Refinery Conference – 1-3 June 2017 - Osaka

FLOW-CHART OF THE PROPOSED METHOD

ROMA TRE A probabilistic risk assessment of process plants under seismic Loading – Fabrizio Paolacci Petroleum and Refinery Conference – 1-3 June 2017 - Osaka

PRIAMUS SOFTWARE

PRIAMUS was developed in MATLAB environment, which allows to define a quantitative probabilistic seismic risk analysis of petrochemicals plants with economic and domino effect evaluation.

5 V. S			3
Storage tank farm	11	Probabilistic Risk Assessment with Monte carlo simulation of process plants Under Selsmic loading	
Tank Label	Select ~	Actions	
Geometry	Select ~	Plant Heat Protection Event Tree Run! Load Project	Save Project Plot Results
Content	Select ~		Control Panel
Economic Value	Select ~	600	Seismic Damage
Typology	Select Y	$\begin{array}{c} 500 \\ 500 \\ 450 \end{array}$ $\begin{array}{c} \\ \hline \\ $	Scenarios Statistics Select Scenario PGA (g) Tank combination number
-Plant information Obstructed surface	Select ~		Plot Domino Lifest
Atmospheric information		350	
Air Properties	Select ~	300 TK-10 TK-10	Domino Level 1
Wind Conditions	Select ~	250 18.9 250 250 250 250	Scenarios
Analysis information	PISK	200	Select Scenario Tank combination number
Random Attenuation	1 law	950 1000 1050 1100 1150 1200 1250 1300 950 1000 1050 1100 1150 1200 1250 1300	4
Reference Period	1 years		Plot
IM So	oil Type um		
PGA V B	✓ g ✓		Domino Level 2
SC	CENARIO		Scenarios
Magnitudo 7	Distance (km) 2		Select combination Tank combination number
FR/	AGILITY max deltalM		Plot
		1000 1150 1150 400 1100 1050 400	
			Final Damage Scenarios

A probabilistic risk assessment of process plants under seismic Loading – Fabrizio Paolacci Petroleum and Refinery Conference – 1-3 June 2017 - Osaka

Architecture of the software

Storage tank farm		
Number of tanks	11	
Tank Label	Salaat	
Location	Select	Actions
Geometry	Select	
Content	Select	
Economic Value	Select	
Typology	Fragility Curves	
Plant information		
Obstructed surface	Select	-
Obstructed sumace		
Atmospheric information —	Select ~	
Wind Conditions	Select	
	June 1	5
Analysis information ANALISYS TYPE	RISK	
Random Attenuation	Law	
Reference Period	1 years	
IM So	il Type um	
PGA ~ B	~ g ~	1.000
SC	ENARIO	1 20
Magnitudo 7	Distance (km) 2	40
FR	AGILITY	20
IM min IM	max deltalM	-

"Tank information" - This section is dedicated to the definition of the characteristics of the storage tank farm: number of tanks, locations, geometries, typology of content, economic value. The software allows the input of the data through prompt or excel files.

"Vulnerability of tanks"- in this section user can define the typology of each tank (anchored, unanchored or elevated, with fix or floating roof). For each structural damage typology that causes loss of containment, user must define the parameters of fragility curves (medium value and standard deviation).

"Plant information"- This part is dedicated to the definition of the vertex of obstructed area, the volume of components inside and the component maximum height inside the zone for the definition of VCE effects.

"Atmospheric information": the statistics of atmospheric conditions are entered. Monthly mean value of air humidity, air temperature and wind velocity are needed. The wind direction is defined in terms of probability for each month

"Analysis information": user can choose the typology of seismic analysis (risk analysis, scenario analysis, analysis for a range of intensity measure).

Architecture of the software

Architecture of the software

Architecture of the software

Architecture of the software

19 fl 🔍																
-Storage tank farm								4.34	11.0	•						
Number of tanks						<u> </u>	<u> </u>	<u>A M</u>	<u>u s</u>	_						
Humber of tanks	11		F	Prohabilistic	Risk Assess	sment with	Monte carlo	simulation	of process p	- lants linder	Seismic Ioa	dina				
Tank Label	Prompt ~	- A etiene		Tobubilistic	TISK ASSOS	Sinche with	wonte curio	Jindiadon	or process p		Selame lou	ung			PRIAMUS	
Location		Actions														
Eduation	Prompt ~	Air properties													- п х	Plot Results
Geometry	Prompt ~	File Edit View In	sert Tools De	skton Wind	ow Help											the Devel
Content	Promet		 (c) (c)<td>u</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ntrol Panel</td>	u												ntrol Panel
	Prompt		•••••													mic Damage
Economic Value	Select ~	Data T	/pe Jan	uarv Feb	ruary M	larch	April	May	June	July A	ugust Sec	tember (October No	vember [Statistics
		1 Mean temperate	re (°C)	14	13	16	19	23	26	29	30	27	24	20	Recorder and close	het Sconario
lypology	Fragility Curves	2 Mean relative u	nidity (%)	75	77	74	63	58	59	55	58	59	70	76		Tank combination number
		<												>	Save and Close	
Plant information																
Obstructed surface	Prompt ~	Atmospheric_cond	tion												– 🗆 X	Domino Effect
-Atmospheric information		File Edit View In	sert Tools De	sktop Wind	ow Help											
	Promot	1 🗃 🗃 🛃 🖕	९, ९, 👋 🔊	🗶 🔏 - 10	3 🛛 🖬											
Air Properties	riompc															nino Level 1
Wind Conditions	Prompt v	Mor	th Jar	nuary Fel	bruary N	Aarch	April	May	June	July /	August Se	ptember	October No	ovember [cenarios
		1 Mean wind velo	city (m/sec)	3	4	4	3	3	3	2	2	2	2	3		
Analysis information —																to Scenario
ANALISYS TYPE	Select ~	<												>		
Random Attenuation	n Law															
Reference Period	1 years	Month	January I	ebruary	March	April	May	June	July	August	September	October	November	December		Plot
IM So	pil Type um	2 NNE	4.3000	3.3000	5.5000	2.9000	9.6000	2.4000	4.5000 9.1000	3.3000	2.9000	3.6000	2.9000	6.5000		
Select v Se	lect Select	3 NE	3.3000	3.3000	4.4000	7.3000	9.6000	8.1000	13.6000	11.1000	7.9000	3.6000	4.3000	5.4000		nino Level 2
		4 ENE 5 E	3.3000 3.3000	3.3000 9.9000	8.8000	10.2000	11.1000 19.3000	13 43.1000	17 19.3000	17.8000 17.8000	4.3000 7.9000	8 10.2000	7.2000	3.2000		
so	CENARIO	6 ESE	3.3000	6.6000	9.9000	9.5000	8.9000	7.3000	9.1000	8.9000	7.2000	10.9000	10.1000	2.2000		cenarios
		7 SE 8 SSE	4.3000	5.5000	6.6000	5.1000	5.9000	4.9000	5.7000	4.4000	15.1000	10.2000	7.9000	1.1000		t combination
Magnitudo 5	Distance (km) 20	9 S	3.3000	2.2000	1.1000	2.2000	2.2000	1.6000	2.3000	2.2000	8.6000	5.8000	6.5000	3.2000		bination number
		10 SSW	3.3000	5.5000	3.3000	2.2000	1.5000	0.8000	1.1000	3.3000	2.2000	5.1000	7.9000	4.3000	Recorder	1
FR	AGILITY	12 WSW	12	9.9000	12.1000	8.8000	4.4000	0.8000	2.3000	3.3000	8.6000	5.1000	6.5000	9.7000		
IM min IM	max deltalM	13 W	13	17.4000	11	6.6000	4.4000	0.8000	2.3000	3.3000	4.3000	5.1000	5.8000	10.8000	Recorder and Save	Plot
		15 NW	12	4.4000	3.3000	4.4000	3.7000	2.4000	1.1000	2.2000	3.6000	3.6000	2.9000	7.5000		
		16 NNW	8.7000	4.4000	3.3000	3.6000	4.4000	3.3000	3.4000	3.3000	2.9000	3.6000	2.9000	11.8000		
																mage Scenarios
												000				

Architecture of the software

A probabilistic risk assessment of process plants under seismic Loading – Fabrizio Paolacci Petroleum and Refinery Conference – 1-3 June 2017 - Osaka

Architecture of the software

۵ 🐙 🔍	
Storage tank farm Number of tanks Tank Label	PRIAMUS Probabilistic Risk Assessment with Monte carlo simulation of process plants Under Seismic loading Probabilistic Risk Assessment with Monte carlo simulation of process plants Under Seismic loading Probabilistic Risk Assessment with Monte carlo simulation of process plants Under Seismic loading Probabilistic Risk Assessment with Monte carlo simulation of process plants Under Seismic loading Probabilistic Risk Assessment with Monte carlo simulation of process plants Under Seismic loading Probabilistic Risk Assessment with Monte carlo simulation of process plants Under Seismic loading Probabilistic Risk Assessment with Monte carlo simulation of process plants Under Seismic loading Probabilistic Risk Assessment with Monte carlo simulation of process plants Under Seismic loading Probabilistic Risk Assessment with Monte carlo simulation of process plants Under Seismic loading Probabilistic Risk Assessment with Monte carlo simulation of process plants Under Seismic loading Process Process Process Plants Under Seismic loading Process Plants Under Seismic loading Process Plants Process Plants Process Plants Pl
Location Select ~ Geometry Select ~	Actions Plant Heat Protection Event Tree Run! Load Project Save Project Plot Results
Content Select v Economic Value Select v	600 550 550 550 550 550 550 550
Typology Fragility Curves Plant information	 "Actions": Here it's possible: select a plot of the plant define manually a shielding effect between tanks for thermal radiation (heat protection) modify the probabilities of occurrence of the physical effects in the event tree.
ANALISYS TYPE RISK Random Attenuation Law Reference Period	run analysis, save load project and plot results
IM Soil Type um PGA B G G G SCENARIO Magnitudo 7 Distance (km) 2 FRAGILITY IM min IM max deltalM	0 0

FEAUTURES OF TANKS

Content : Crude oil

	TK1	TK2	ТКЗ	ТК4	ТК5	ТК6	ТК7	ТК8	ТК9	ТК10	TK11
Diameter (m)	37.96	37.96	37.96	41.26	54.86	41.26	54.86	65.4	81.46	81.46	54.86
Liquid Level (m)	11.3	11.3	11.3	12	15.3	12	15.3	10	21.6	21.6	15.3
Height (m)	14	14	14	15	18	15	18	14	25	25	18
Yielding strength (MPa)	345	345	345	345	345	345	345	345	345	345	345
Shell equiv. thick. (m)	0.013	0.013	0.013	0.013	0.0185	0.013	0.0185	0.014	0.026	0.026	0.0185
Shell base thick. (m)	0.02	0.02	0.02	0.02	0.0295	0.02	0.0295	0.0295	0.04	0.04	0.0295
Annular plate thick. (m)	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.016	0.016	0.008

FRAGILITY ANALYSIS OF STORAGE TANKS

Damages	Parameters	TK-1	ТК-2	ТК-3	ТК-4	TK-5	TK-6	ТК-7	TK-8	ТК-9	TK-10	TK-11
Shall fracture	Mean	0.145	0.145	0.145	-0.254	-0.861	-0.254	-0.861	0.228	-2.637	-2.637	-0.861
Shen nactare	St. dev.	0.618	0.618	0.618	0.583	0.696	0.583	0.696	0.696	0.77	0.77	0.696
FED	Mean	2.205	2.205	2.205	1.940	1.854	1.940	1.854	5.685	-0.076	-0.076	1.854
EFD	St. dev.	0.442	0.442	0.442	0.406	0.504	0.406	0.504	0.595	0.643	0.643	0.504
والطائم	Mean	1.772	1.772	1.772	1.695	1.873	1.695	1.873	5.566	1.369	1.369	1.873
Silding	St. dev.	0.405	0.405	0.405	0.362	0.435	0.362	0.435	0.437	0.644	0.644	0.435
Overturning	Mean	0.527	0.527	0.527	0.522	0.565	0.522	0.565	1.124	1.017	1.017	0.565
	St. dev.	0.405	0.405	0.405	0.362	0.435	0.362	0.435	0.441	0.645	0.645	0.435

RESULTS

The most likely seismic damage scenarios (Level 0) along with the relevant frequency of occurrence together with the most likely chain of accidents can be identified.

A probabilistic risk assessment of process plants under seismic Loading – Fabrizio Paolacci Petroleum and Refinery Conference – 1-3 June 2017 - Osaka

RESULTS

The most likely seismic damage scenarios (Level 0) along with the relevant frequency of occurrence together to the more likely chain of accidents can be identified.

TK TΚ -4 ТΚ -3 -1 INITIAL DAMAGE SCENARIO Sismic Damage Probability Scenario (damaged 1X-340 #53300 units) TK-TK-8 EFF. 0.998 None 4441 6 1.10e-03 TK-9 TK-10 TK-7 TK-5 TK-9 3.0802e-04 2.8989e-04 TK-10 TK-5 TK-7 TK-9 4.4430e-06 TK-10 TK-11 9 TK-11 ₽ TK-10 ТК-9 D, HIMMIN Level 2 Level 0 Level 1

Accidental Chain #2, P=2.37E-04

N°

1

2

3

4

5

A probabilistic risk assessment of process plants under seismic Loading – Fabrizio Paolacci Petroleum and Refinery Conference – 1-3 June 2017 - Osaka

- A new procedure for the Quantitative Risk Analysis of process plants subjected to NaTech events, in particular seismic loading, has been presented and discussed.
- The evolution of the domino effect within a process plant struck by an earthquake has been reproduced assuming that the accident dynamics may be represented by a sequence of propagation steps, called "levels".
- Each propagation level includes a subset of process units directly damaged by units belonging to the previous levels. The first level (level 0) characterises the initial damage conditions directly induced by the seismic action to the single units of the plant.
- Eventual subsequent levels (level > 0), that is the domino effect, may be generated by material releases (LOC) that follow specific seismic damage conditions, hererecognized by a new Damage/LOC matrix. This latter has been specifically proposed for storage tanks, as the one of the most seismically vulnerable units in process plants.

With respect to other methods the following key aspects characterize the proposed approach:

- An automatic generation of random initial scenarios based on the probability of occurrence of seismic damage in the plant components (fragility curves), is employed;
- A direct association of Damage states (DS) and loss of containment (LOC) events by proper DS/LOC matrix is proposed;
- An automatic generation of consequences due to LOC events is performed; this allows the propagation of any number of multiple accidental chains that is completely independent of the analysed plant.
- The possibility to adapt the risk output to the needs. For example, it has been shown how to easily evaluate economic losses or damage scenarios simply based on a certain number of simulations.
- The method can be implemented in any computer programming environment and employed for any type of process plant;

- The proposed methodology has been implemented in Matlab["] environment (**PRIAMUS**) and used for the computation of the seismic risk of a typical tank farm belonging to a petrochemical plant ideally located in the south of Italy (Sicily).
- The results demonstrated the flexibility of the software in providing either the probability of occurrence of a given damage scenario or the total risk of the tank farm in terms of annual probability of lost volume or the annual probability of occurrence of critical damage scenarios.
- It has been shown that the proposed software can also be usefully employed to estimate the probability of occurrence of specific damage propagation effects (domino effect).

Thank you very much for your attention

Questions?

