

8th International Conference and Exhibition on Pharmaceutics & Novel Drug Delivery Systems

Local delivery of nanomedicines-loaded hydrogel for the treatment of glioblastoma

Fabienne Danhier

Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug delivery and Biomaterials

European Doctorate in nanomedicin and pharmaceutical innovation

BEWARE FELLOWSHIPS

Glioblastoma (GBM)

Most common and aggressive malignant brain tumor in adults

http://www.inforadiologie.ch/glioblastome.php

Grade IV Central Nervous System (CNS) tumor: Cytological malignant, mitotically active neoplasm

associated widespread **invasion**, **rapid proliferation**, **recurrence** after all forms of therapy and **fatal outcome**.

Glioblastoma (GBM)

- Rapid <u>proliferation</u> and propensity to <u>infiltrate</u> healthy brain tissue
- Standard-of-care therapy:

SURGICAL RESECTION + RADIOTHERAPY + CHEMOTHERAPY with Temozolomide

 \rightarrow <u>Incurable</u>: median survival 12-15 months with 5 years survival rate < 10%

- \rightarrow <u>Chemoresistance</u>
- \rightarrow High tendency of <u>recurrences</u> after surgical resection due to

micrometastatis undetectable by MRI

UNMET MEDICAL NEEDS: URGENT NECESSITY TO FIND NEW TREATMENT STRATEGIES

Alternative

- Gliadel[®] wafer: first intracereblal implant for the treatment of GBM approved by the FDA in 1996
- Local delivery of carmustine

RELEASE OF ACTIVE COMPOUND DIRECTLY INTO THE CNS BY DIFFUSION AND DEGRADATION: PROMISING STRATEGY FOR THE TREATMENT OF GLIOBLASTOMA

- migration of implants
 - release of 80% carmustine in 1 week
 - many side effects : intracranial abscess, meningitis, impaired wound healing, cerebrospinal fluid leak, seizures and tumor cyst formation

Local delivery

Advantages:

- Reduce systemic side effects
- Avoid the BBB
- Concentrate the drug to the target tissue

Challenges:

- Controlled and sustained release of the drug
- Fitting with the resection cavity
- Injectability
- Biocompatibility and biodegradability

Aim / hypothesis

Hydrogels

PEG-DMA hydrogel

+ Temozolomide (TMZ)

- Polyethylene glycol dimethacrylate (PEG-DMA)[®]
 + Lucin TPO[®] (photoinitiator)
- Photopolymerization (UV light)
- Prevent cell infiltration (PEG)
- Commercially available (GMPc)

Fourniols et al. J. Control. Rel (2015)

Lipid nanocapules (LNC) hydrogel

+ Gemcitabine derivative (GemC₁₂)

- Labrafac[®], Span 80[®], Kolliphor[®]
- Gelation in the syringe
- No polymers, no gelling agents nor application of external stimuli
- Gem has the potent to overcome the resistance of GBM to conventional chemotherapy

Bastiancich et al. J. Control. Rel (2016)

Nanomedicines : physico-chemical characterization

TMZ-loaded PEG-DMA hydrogel

Solubilization of TMZ in polymeric micelles PEG-p(CL-co-TMC) 50:50

Size (nm): 35 ± 1.5 PDI: 0.058 ζ potential: -5.2 ± 12.4 TMZ conc (mg/ml): 2 ± 0.1

Irradiation 15s, 750 mW/cm2, 400 nm

 $\Delta t^{max} = 5.6$ ° C

GemC₁₂-LNC hydrogel

Hydrogel: when the drug is a key player of the nanoparticle

Size (nm): 69 \pm 4 PDI: 0.27 ζ potential: -2.5 \pm 0.2 GemC₁₂ conc (mg/ml): 16.6

Adapted rheological properties: Near to the brain tissue moduli (1kPa)

In vitro drug release in artificial cerebrospinal fluid

In vivo tolerability (short term)

DAY 1

- Creation of a cavity in the $\underline{\text{brain}}$ of the left frontal lobe of 8-weeks old NMRI mice

- Injection of 10 μl PBS, unloaded LNC, $\text{GemC}_{12}\text{,}$ $\text{GemC}_{12}\text{-LNC}$ in the cortex

DAY 8

- Sacrifice of the mice and extraction of the brain

- Embed the brains in paraffin and cut in 10 μm sections

CAVITY

- EVALUATION OF THE CELLULAR AND INFLAMMATORY RESPONSE IN THE CAVITY BY

A) Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay

B) Microglia activation by Iba-1 immunostaining

In vivo tolerability: TUNEL

In vivo tolerability: Iba-1 staining (microglia activation)

The microglial activation is due to the surgery

In vivo anti-tumor efficacy

- Inject intratumorally the treatment

- At day 8 after injection of the treatment sacrifice the animal, extract and weight the tumor

In vivo anti-tumor efficacy

Proof of concept:

Significant reduction in tumor weight one week after injection of drug-loaded hydrogel compared to other groups.

In vivo orthotopic glioblastoma model (on going)

Stereotactic injection of 3x10⁴ cells (5µL)

Striatum

Right frontal lobe (striatum)

Coordinates:

2.1 mm lateral from bregma0.5 mm anterior3 mm deep from the border of the cranium

In vivo orthotopic glioblastoma model (on going)

Positive contrast: hyper-intense zone

7 T scanner Biospec 70/20 Avance III, Bruker RARE sequence: TR=3200ms; effective echo time = 21,3 ms; acceleration factor = 4; FOV= 2x2 cm

In vivo resection glioblastoma model (on going)

Conclusions

Injectable hydrogels with slow and controlled release

Adapted rheological properties

Good short-term tolerability in the brain

Decreased tumor growth

Proof-of-concept of the two projects has been established

<u>Perspectives:</u> In vivo anti-tumor efficacy in a **resection model**

Prof. Veronique Préat Prof. Anne des Rieux Chiara Bastiancich Dr. John Bianco Dr. Julian Leprince Thibaut Fourniols Luc Randolph Marline Ndiaye Mengnan Zhao Bernard Ucakar Kevin Vanvarenberg

The Advanced Drug Delivery & Biomaterials team!

> Prof. Frédéric Lagarce Prof. Guillaume Bastiat Marion Pitorre

BEWARE FELLOWSHIPS

European Doctorate in nanomedicine and pharmaceutical innovation

Thank you for your attention

