

International Conference on Food Safety and Regulatory Measures August 17-19, 2015 Birmingham, UK

Development of Novel Methods for The Determination of Synthetic Colorants

F. Ayça Özdemir Olgun Istanbul Technical University

18/08/15

- A Brief Look at Colorants
- > What are Food Colorants
- > Classification
- > Why do we use?
- > Legislations and Limitations
- Objectives
- Methodology
- Experimental Studies
- Results
- Conclusion

A Brief Look at Food Colorants

What are food colorants??

- Food colorants are an important class of food additives attracting the attention of consumers, and give the first impression about the taste and quality of a food product.
- Color in one form or another has been added to our foods for centuries. It is known that Egyptians colored candy and wine dating back to 400 BC.

A Brief Look at Food Colorants

Synthetic Food Colorants

Natural Food Colorants

- artificially synthesized substance, </br/>

 manufactured by extracting from ✓ Anv
- pigment or dye for coloring foods
- \checkmark High Stability to light, oxygen and pH
- \checkmark Color uniformity
- ✓ Low microbiological contamination
- ✓ Relatively lower production costs
 - (Alves et al. 2008)
- Some life-threatening risks (Kapadia et al.
- 1998; Eigenmann and Haenggeli 2007)

- - natural substances
 - \checkmark no limitation for the quantity
 - **★** low stability
 - ★ high cost

+ A Brief Look at Food Colorants

Why do we use??

- reference to intensify the actual color of foods
- reto obtain color stability in mass production
- regain the lost color of a food after some food process
- coloring some types of food such as confectionary which are actually colorless

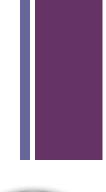
A Brief Look at Food Colorants

Legislations

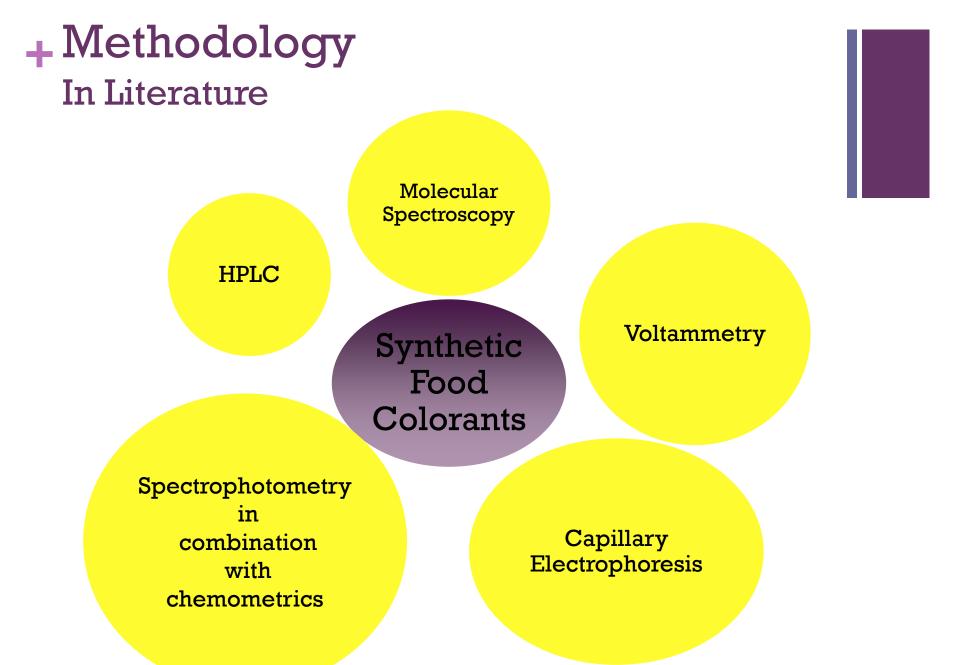
***** EU COMISSION

(30 June 1994 on colors for use in foodstuffs)

***** World Health Organization

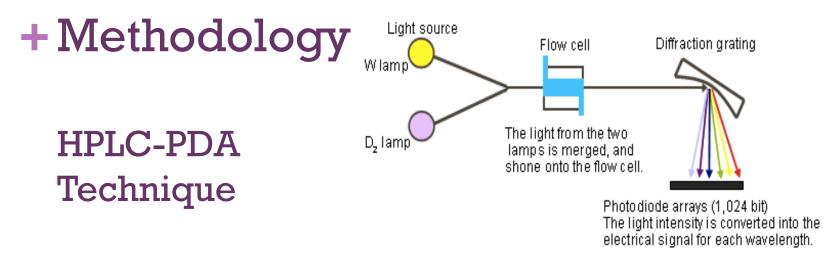

***** US Food and Drug Administration

+ A Brief Look at Food Colorants Legislations


E		Е	
Number	Name of Colorant	Number	Name of Colorant
E 100	Curcumin	E 155	Brown HT
E 101	Riboflavine	E 160	Carotenoids
E 102	Tartrazine	E 163	Anthocyanines
E 132	Indigo Carmine	E 124	Ponceau 4R
E 133	Brilliant Blue	E 170	Calcium Carbonate
E 141	Chlorophylls	E 171	Titaniumdioxide
E 142	Green	E 173	Alluminum
E 150	Amonnium Caramel	E 174	Silver
E 151	Brilliant Black	E 175	Gold
E 153	Carbon	E 180	Litolrubin BK
E 154	Brown FK	E110	Sunset Yellow

+ Objectives

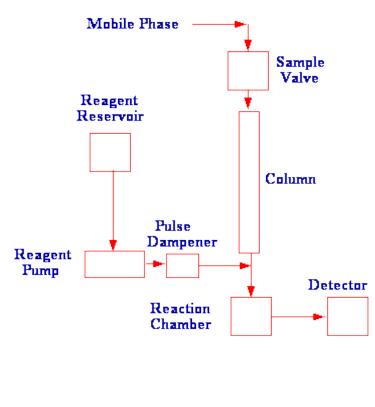
- Developing and investigating novel methods for the determination of synthetic food colorants
- Analyzing synthetic colorant content of food products
- Providing food control by informing consumers about the limitations of these substances
- Aiming the issues above, adapting in-vitro antioxidant assay CUPRAC for the determination of synthetic food colorants
- Correlation of proposed method results with HPLC findings
- Combination of in-vitro antioxidant assays with HPLC technique - application of online HPLC-CUPRAC technique



+ Methodology CUPRAC(Cupric ion Reducing Antioxidant Capacity)

- The CUPRAC method is a simple and versatile antioxidant capacity assay useful for a wide variety of polyphenols, including phenolic acids, hydroxycinnamic acids, flavonoids, carotenoids, anthocyanins, as well as for thiols, synthetic antioxidants, and vitamins C and E.
- The chromogenic oxidizing reagent bis(neocuproine)copper(II) cation (Cu(II)-Nc) is used as an outer-sphere electrontransfer agent and by reduction of this reagent with antioxidants, bis(neocuproine) copper(I) cation (Cu(I)-Nc) is formed.

 $nCu(Nc)_2^{2+} + n$ -electron reductant (AO) $nCu(Nc)_2^+ n$ -electron oxidized product + n H⁺


R. Apak, K. Guclu, M. OzyUrek, S. E. Karademir and M. Altun, Free Radical Res., 2005, 39, 949–961. R. Apak, K. Guclu, M. Ozyurek, S. E. Karademir and E. Ercag, Int. J. Food Sci. Nutr., 2006, 57, 292–304.

- Most preferred methods for the determination of synthetic food colorants are still chromatographic techniques coupled with ultraviolet (UV) or diode array detectors (Serdar and Knezevic 2009; Culzoni et al. 2009; Kirschbaum et al. 2006)
- There are two main problems with the use of single-wavelength UV detectors.
- Warious UV–visible (UV–Vis) spectra with different maximum absorbance wavelengths →long seperation time
- # Possible overlap of colorant peaks or the presence of other organic compounds such as flavors in the sample.
- © Both problems can be solved in the case of DADs. All dyes can be detected near to their maximum wavelength with the aid of multisignal detection capability, and peak identity can be easily confirmed.

+ Methodology On-Line HPLC Derivatization Techniques

Post-column derivatization involves the modification of the chromatographic system to allow the reaction to take place prior to entering the detector by inserting a post column reactor between the column and the detector.

The post-column reactor is required to fulfill the following functions:

1)Provide a source of reagent and a means of mixing it efficiently with the column eluent.

2)Ensure the reaction is complete before the derivatized product enters the detector.

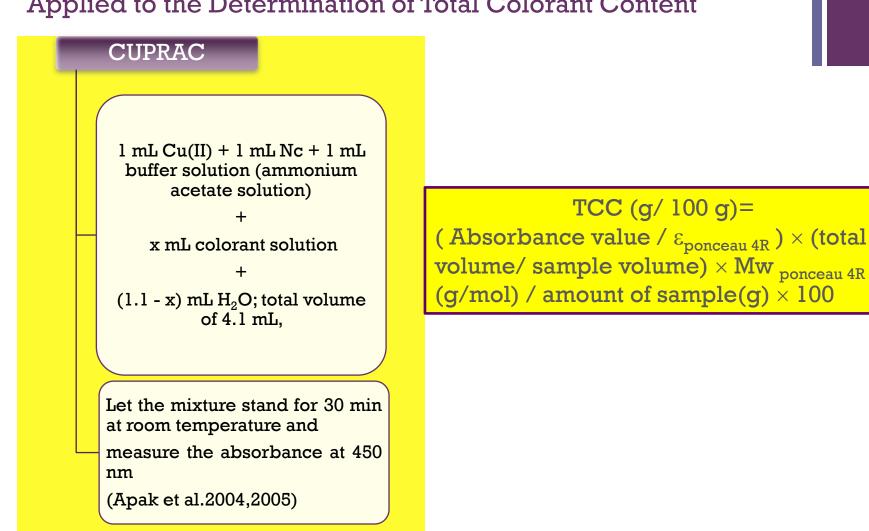
3)Minimize the dispersion that takes place in the reactor so that the integrity of the separation achieved by the column is maintained.

+ Experimental Studies

Color index numbers, European codes, names and molecular formulas of analyzed synthetic colorants

Color Index (CI)	E	Name of	Molecular Formula
Numbers	Codes	Colorants	
19140	E 102	Tartrazine	$\mathbf{C}_{16}\mathbf{H}_{9}\mathbf{N}_{4}\mathbf{N}\mathbf{a}_{3}\mathbf{O}_{9}\mathbf{S}_{2}$
15985	E 110	Sunset Yellow	$\underset{2}{\mathbf{C}_{16}\mathbf{H}_{10}\mathbf{N}_{2}\mathbf{Na}_{2}\mathbf{O}_{7}\mathbf{S}}$
73015	E 132	Indigo Carmine	$\mathbf{C}_{16}\mathbf{H}_8\mathbf{N}_2\mathbf{N}\mathbf{a}_2\mathbf{O}_8\mathbf{S}_2$
45430	E 127	Erytrsosine	$\mathbf{C}_{20}\mathbf{H}_{6}\mathbf{I}_{4}\mathbf{N}\mathbf{a}_{2}\mathbf{O}_{5}$
16255	E 124	Ponceau 4R	$\mathbf{C}_{20}\mathbf{H}_{11}\mathbf{N}_{2}\mathbf{N}\mathbf{a}_{3}\mathbf{O}_{10}\mathbf{S}_{3}$

+ Experimental Studies Preparation of Standard and Sample Solutions


Tartrazine, sunset yellow, indigo carmine, erythrosine, ponceau4R

- Weighed as 100 mg and diluted to 100 mL
- Kept in ultrasonic bath for 30 min to achieve complete homogenization

Powder beverage samples (orange, lemon, rosehip) were purchased from local market

- Weighed as 100 mg and diluted to 50 mL
- Kept in ultrasonic bath for 30 min to achieve complete homogenization

The colorant standart sample solutions and were injected to the chromatographic system after filtering through 0.45µm disposable syringe filters. Spectrophotometric CUPRAC procedure was applied.

+ Experimental Studies

Spectrophotometric Assays of Total Antioxidant Capacity Applied to the Determination of Total Colorant Content

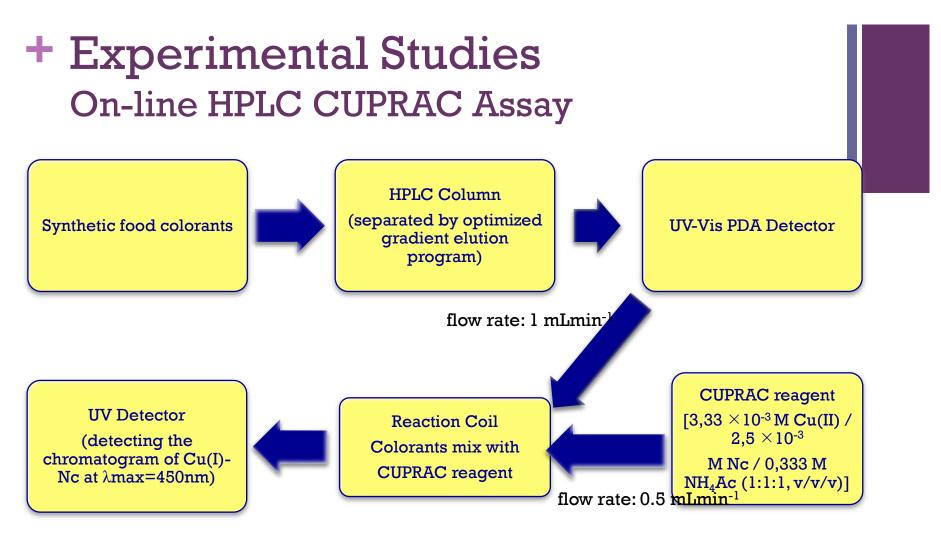
+ Experimental Studies **Chromatografic Methods**

Chromatographic Separation

In order to achieve full resolution of all colorants, a variety of gradient elution programs were tested, using different mobile phases and changing retention times. But in all optimization experiments, the flow rate and injection volume were kept constant as 1 ml min⁻¹ and 20 µL, respectively.

t (min)	A (%)	B (%)	Table 2. Optimized gradient elution program for the separation of colorants by HPLC-PDA
0	100	0	(A: 0.13 M ammonium acetate solution, B: HPLC grade methanol)
2	100	0	TCC $_{\rm HPLC}$ = Σ C _i PECC $_{\rm i}$ × [Total sample amount (L) /sample amount
20	45	55	(g)] × 100
30	0	100	
32	0	100	
33	100	0	
35	100	0	aun B. Demirata, R. Apak Food Anal. Methods 2012 5: 1335-1341 18/08/15

+ Experimental Studies Chromatografic Methods


Chromatographic Conditions

- Reversed phase C18 column system
- Gradient elution program

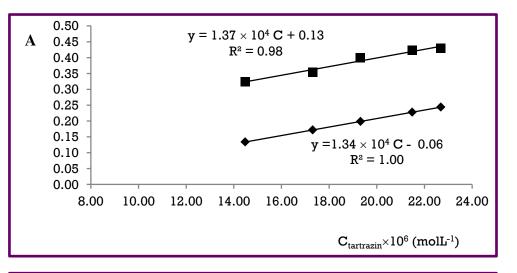
(with mobile phase A: 0.13M ammonium acetate solution, B: methanol)

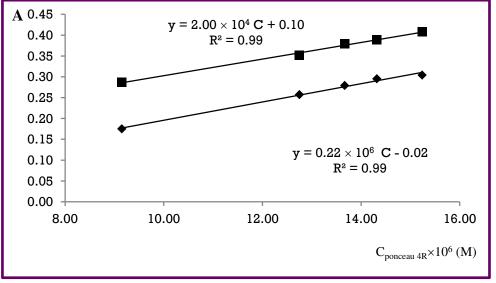
- Flow rate: lmLmin⁻¹
- ◆ Injection volume: 20µL
- Detection: PDA detector monitoring each colorant at its own appropriate wavelength

(λ_{max} was chosen as 485 nm for mutual evaluation of colorants)

On-line HPLC-CUPRAC method assayed by Celik et. al. (2010) was applied directly to synthetic food colorants separating with the related gradient elution program. Colorants were let to react with CUPRAC reagent in a time period of 1 minute.

TCC _{HPLC-CUPRAC} = (Σ yi / slope) × Total volume (L) / sample amount (g)


S. E. Celik, M. Ozyurek, K. Guclu and R. Apak, Anal. Chim. Acta, 2010, 674, 79–88.


Results CUPRAC Assay of Total Antioxidant Capacity Applied to the Determination of Synthetic Food Colorants

The indirect molar absorptivities and linear concentration ranges of the tested colorants with respect to the CUPRAC method (N=5)

NAME OF COLORANTS	ε (LMOL ⁻¹ CM ⁻ ¹)	WORKING RANGES (×10 ⁻⁵ M)	CALIBRATION EQUATIONS	LOD (M)	LOQ (M)	PECC
Ponceau 4R (E124)	$2.24 imes 10^4$	0.48 - 3.90	$A=(2.24\pm0.36)\times10^{4}\times C_{PONCEAU}$ $_{4R}-(0.0227\pm0.0073),$ R=0.9990	0.11 × 10 ⁻⁶	0.36 × 10 ⁻⁶	1.00
Tartrazine (E102)	1.34 × 10 ⁴	0.58 – 4.64	A= $(1.34 \pm 0.12) \times 10^4 \times C_{TARTRAZINE}$ (0.0060 ± 0.0003), R = 0.9945	1.48 × 10 ⁻⁶	4.93 × 10 ⁻⁶	0.60
ERYTHROSINE (E127)	5.20×10^{3}	0.10 - 0.38	$A = (5.20 \pm 0.31) \times 10^3 \times C_{\text{ERYTHROSINE}} + (0.0087 \pm 0.0020),$ $R = 0.9996$	0.21 × 10 ⁻⁶	0.70 × 10 ⁻⁶	2.32
Sunset Yellow (E110)	1.49 × 10 ⁴	0.56 – 4.74	$A = (1.49 \pm 0.06) \times 10^4 \times C_{SUNSETYELLOW} + (0.0151 \pm 0.0041), R = 0.9996$	1.80 × 10 ⁻⁶	6.00 × 10 ⁻⁶	0.67
INDIGO CARMINE (E132)	1.03×10^{4}	0.11 – 0.91	$A = (1.03 \pm 0.11) \times 10^{4} \times C_{iNDIGOCARMINEO} + (0.0829 \pm 0.0588), R = 0.9912$	1.91 × 10 ⁻⁶	6.38 × 10 ⁻⁶	0.46

CUPRAC Assay of Total Antioxidant Capacity Applied to the Determination of Synthetic Food Colorants

The interaction of orange powder beverage with tartrazine (\clubsuit :lmL 10⁻²M CuCl₂ + lmL 7.5×10⁻³M Nc +1mL 1M NH₄Ac+ tartrazine; \blacksquare :lmL 10⁻²M CuCl₂ + lmL 7.5×10⁻³M Nc +1mL 1M NH₄Ac+ tartrazine + orange powder beverage)

The interaction of rosehip powder beverage with ponceau 4R (\bigstar :1mL 10⁻²M CuCl₂ + 1mL 7.5×10⁻³M Nc +1mL 1M NH₄Ac+ ponceau 4R; 1mL 10⁻²M CuCl₂ + 1mL 7.5×10⁻³M Nc +1mL 1M NH₄Ac+ ponceau 4R + rosehip powder beverage)

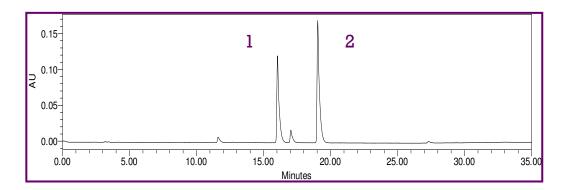
CUPRAC Assay of Total Antioxidant Capacity Applied to the Determination of Synthetic Food Colorants Relative Standard Deviation % and Recovery % of Synthetic Food Colorants added to powder beverage samples

Colorant addition to powder beverages	TCC (calculated with PECC coefficients) (M)	Concentration added (M)	Concentration expected (M)	Concentration found (M)	Recovery (%)
Tartrazine addition to orange	6.82 × 10 ⁻⁶	17.31 × 10 ⁻⁶	24.13 × 10 ⁻⁶	26.86 × 10 ⁻⁶	111.0
powder beverage		21.49 × 10 ⁻⁶	28.31 × 10 ⁻⁶	32.01 × 10 ⁻⁶	113.0
Ponceau 4R addition to rosehip	4.58 × 10 ⁻⁶	12.76 × 10 ⁻⁶	18.23 × 10 ⁻⁶	16.72 × 10 ⁻⁶	91.7
rosehip powder beverage		14.32 × 10 ⁻⁶	19.79 × 10 ⁻⁶	18.38 × 10 ⁻⁶	92.9

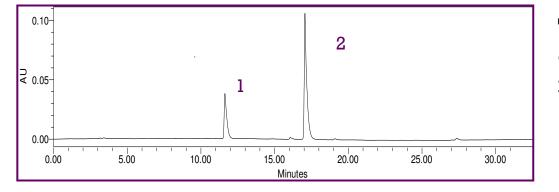
Determination of Synthetic Food Colorants by HPLC-PDA

The chromatogram of standard colorant mixture solution (Colorant mixture consists of 1: E102, 2: E132, 3: E110, 4: E124, 5: E127, respectively. Flow rate: lmLmin-1; λ_{max} : 485nm)

AU		
	E124	4
	E110	
	E102	E127
	E132	
	t _R (min)	
		18/08

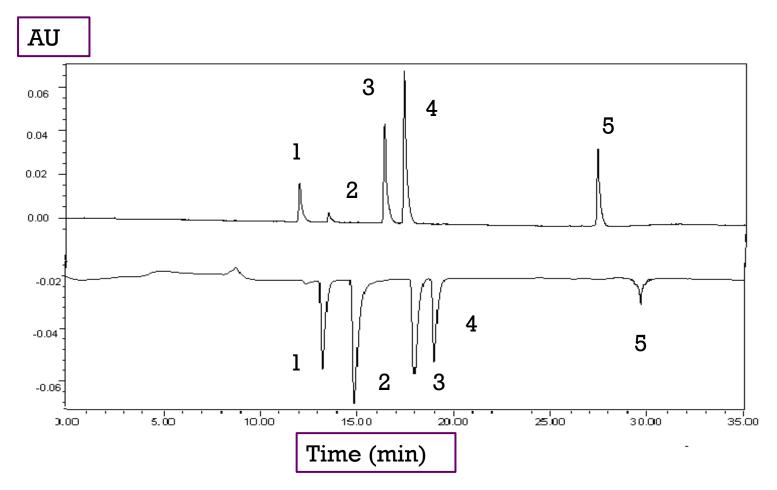

Results

+ Determination of Synthetic Food Colorants by HPLC-PDA

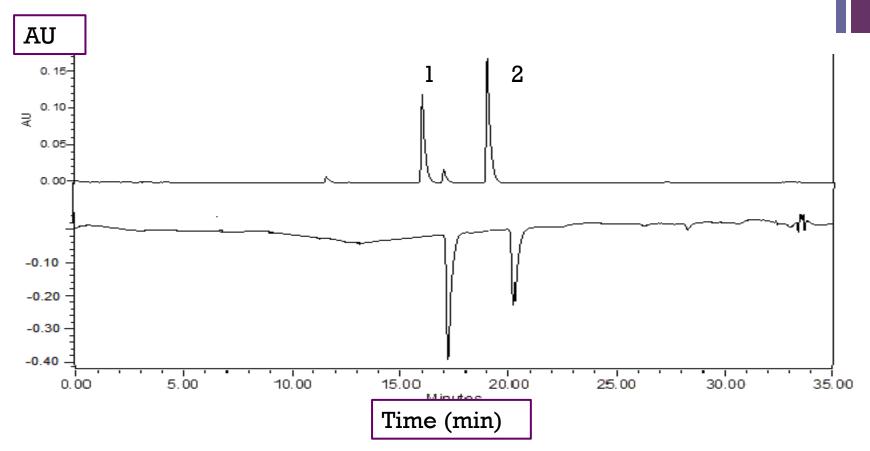

Retention times ($t_R(min)$), linear ranges, calibration equations, regression coefficients, LOD and LOQ values of the tested colorants with respect to HPLC-PDA technique

	<u></u>		<u>+</u>				
Name of colorants	λ _{max} (nm)	t _R (min)	Working ranges (M)	Calibration Equation A= mC+n	R ²	LOD (M)	LOQ (M)
				(A: Peak Area)			
Ponceau 4R	508	17.43 ± 0.05	$8.27 \times 10^{-6} -$	$A = (8.0 \pm 0.69) \times$	0.9935	7.56×10^{-6}	25.21×10^{-6}
(E124)			8.27×10^{-5}	$10^{10} \mathrm{C} + (1.07 \pm$			
				$(2.50) \times 10^5$			
Tartrazine	427	14.58 ± 0.03	9.20×10^{-6} -	$A=(2.06 \pm 0.16) \times$	0.9997	2.02×10^{-6}	6.74×10^{-6}
(E102)			9.20×10^{-5}	$10^{11} \mathrm{C} + (1.11 \pm$			
				$128.5) \times 10^5$			
Erythrosine	528	27.39 ± 0.03	$5.68 \times 10^{-6} -$	$A = (3.39 \pm 0.05) \times$	0.9998	8.64×10^{-7}	28.89×10^{-7}
(E127)			5.68×10^{-5}	$10^{11}\mathrm{C}$ - (1.06 ±			
				$1.17) \times 10^{5}$			
Sunset	482	16.41 ± 0.04	$1.11 \times 10^{-5} -$	$A=(6.60 \pm 0.61) \times$	0.9995	1.06 ×10 ⁻⁶	3.55×10^{-6}
Yellow			1.11×10^{-3}	$10^{10} \mathrm{C} + (1.25 \pm$			
(E110)				$(2.94) \times 10^5$			
Indigo	608	13.53 ± 0.03	$1.91 \times 10^{-6} -$	$A=(2.12\pm 0.18) \times$	0.9994	1.47×10^{-6}	4.87×10^{-6}
carmine			1.91×10^{-5}	$10^{10} \mathrm{C} + (7.02 \pm$			
(E132)				$17.02) \times 10^3$			18/08/15

Determination of Synthetic Food Colorants by HPLC-PDA



The chromatogram of rosehip powder beverage monitored at λ max: 485nm (1: sunset yellow, 2: ponceau4R)


The chromatogram of orange powder beverage monitored at λ max: 485nm (1: tartrazine, 2: ponceau4R)

Determination of Synthetic Food Colorants by online HPLC-CUPRAC Method

The chromatogram of synthetic mixture of synthetic food colorants mixture solution (consists of 1: E102, 2: E132, 3: E110, 4: E124, 5: E127), at 485 nm and 450 nm respectively.

Determination of Synthetic Food Colorants by on-line HPLC-CUPRAC Method

The chromatogram of rosehip powder beverage sample solution monitored at 485 nm and 450 nm, respectively. (Peak 1: sunset yellow; Peak 2: ponceau 4R)

18/08/15

Determination of Synthetic Food Colorants by online HPLC-CUPRAC Method

Retention times ($t_R(min)$), linear ranges, calibration equations, regression coefficients, LOD and LOQ values of the tested colorants with respect to on-line HPLC-CUPRAC method

Name of colorant	t _R (min)	Calibration equation A=mC(M)+n	R ²	working range (× 10 ⁻⁶ M)	LOD (M)	LOQ (M)
Tartrazine (E102)	12.81 ± 0.15	$A = (7,27 \pm 1,31) \times 10^{11} \text{ C} - (1,51 \pm 2,49) \times 10^5$	0.9937	0.46 – 3.71	4.17 × 10 ⁻⁷	13.90 × 10 ⁻⁵
Sunset Yellow (E110)	17.17 ± 0.08	$A=(6.88 \pm 0.85) \times 10^{10} \text{ C} - (9.92 \pm 18.88) \times 10^{4}$	0.9959	5.70 - 41,20	3.72 × 10 ⁻⁶	12.40 × 10 ⁻⁶
Erythrosine (E127)	27.39 ± 0.03	$A = (1.25 \pm 0.27) \times 10^{11} \text{ C} - (1.14 \pm 2.73) \times 10^4$	0.9990	0.26 – 2.10	0.27 × 10 ⁻⁷	0.90×10^{-7}
Indigo Carmine (E132)	14.34 ± 0.03	$A=(7.71 \pm 2.89) \times 10^{10} \text{ C} - (4.73 \pm 10.68) \times 10^5$	0.9953	8.95 - 71.60	1.39 × 10 ⁻⁶	2.33×10^{-6}
Ponceau 4R (E124)	17.43 ± 0.05	$A = (8.19 \pm 2.08) \times 10^{10} \text{ C} - (3.97 \pm 4.84) \times 10^5$	0.9978	5.65 - 45.20	3.00 × 10 ⁻⁶	10.00 × 10 ⁻⁶

Determination of Synthetic Food Colorants by on-line HPLC-CUPRAC Method

Relative Standard Deviation and Recovery % of Synthetic Food Colorants added to powder beverage samples with respect to on-line HPLC-CUPRAC Method

Colorant addition to powder beverage samplse	Colorant content (M)	Added concentratio n (M)	Expected concentratio n (M)	Found Concentrati on (M)	Recovery (%)
Tartrazine	Tartrazine in	0.93×10^{-6}	1.95×10^{-6}	2.24×10^{-6}	114.8
addition to orange	orange powder	1.85×10^{-6}	2.87×10^{-6}	3.00×10^{-6}	104.5
powder beverage	beverage (M) 1.02×10^{-6}				
Ponceau 4R	Ponceau 4R	1.13×10^{-6}	10.90×10^{-6}	10.12×10^{-6}	92.80
addition to rosehip	in rosehip powder	2.26×10^{-6}	12.03×10^{-6}	10.73×10^{-6}	90.12
powder	beverage (M) 9.77×10^{-6}				
beverage	9.//×10°				18/08/15

Results

Comparison of retention times (tR), limit of detection values (LOD) and limit of qualification values (LOQ) of tested colorants, with respect to HPLC-PDA technique and on-line HPLC-CUPRAC method

Name of Colorant	t _R (HPLC-PDA)	t _R (on-line HPLC- CUPRAC)	LOD (HPLC- PDA; 485 nm)	LOD (on-line HPLC- CUPRAC, 485nm)
Ponceau 4R	17.43±0.05	18.16±0.03	7.56 × 10 ⁻⁶	2.80 × 10 ⁻⁶
Tartrazine	12.03±0.08	12.81±0.15	2.02 × 10 ⁻⁶	4.17× 10 ⁻⁷
Erythrosine	27.39±0.03	28.27±0.06	8.64 × 10 ⁻⁷	2.70 × 10 ⁻⁸
Sunset Yellow	16.41±0.04	17.17±0.08	1.06 ×10 ⁻⁶	3.72 × 10 ⁻⁷
Indigo Carmine	13.53±0.03	14.34±0.11	1.42 × 10 ⁻⁶	1.39 × 10 ⁻⁶ 18/08/15

The Analyses of Powder Beverage Samples

Colorant contents of powder beverage samples found by HPLC and on-line HPLC-CUPRAC assays (N=5)

Name of	Orange powder beverage		Rosehip powder beverage		
colorant	(g/100g powder beverage)		(g/100g powder beverage)		
	HPLC-PDA	On-line HPLC- CUPRAC	HPLC-PDA	On-line HPLC- CUPRAC	
	(485 nm)	(450 nm)	(485 nm)	(450 nm)	
Tartrazine (E102)	0,61±0,02	0,45±0,03	0,29±0,03	0,28±0,04	
Sunset Yellow (E110)					
Erythrosine (E127)	0,07±0,01	0,04±0,01	-	-	
Indigo Carmine (E132)	-	-	-	-	
Ponceau 4R (E124)	-	-	0,24±0,02	0,22±0,01	

+ The Analyses of Powder Beverage Samples

Total colorant contents of powder beverage samples found by HPLC (with CUPRAC calculations) and on-line HPLC-CUPRAC assays (N=5)

Name of sample	CUPRAC	HPLC	On-line HPLC-
	g Ponceau 4R/ 100 g	(CUPRAC calculations)	CUPRAC
		g Ponceau 4R/ 100 g	g Ponceau 4R/ 100 g
Orange powder beverage	0.85±0.01	0.65±0.01	0.76±0.02
Rosehip powder beverage	0.68 ± 0.02	0.51±0.01	0.49±0.01
	CUPRAC,	P= 0.05; F _{experimental} = 8.04;	
	HPLC	F _{critical} = 18.51;	
	(CUPRAC	F _{experimental} < F _{cr}	
Statistical Analysis with two-way ANOVA Test	calculated)	- experimental - ci	itical
	and on-line		
	HPLC-		
	CUPRAC		

+ Conclusions

In this study, determination of five synthetic food colorants was investigated using spectrophotometric and chromatographic methods.

By adapting the novel spectrophotometric CUPRAC assay of total antioxidant capacity to the determination of total food colorant content, certain beverage samples were easily and accurately analyzed. The total colorant content was found at low reagent and instrumentation costs with the use of a UV-vis spectrophotometer easily found in a conventional laboratory equipped with simple instruments.

+ Conclusions

- HPLC analysis of colorants was performed with two different techniques.
- 1)In conventional HPLC method, PDA detector system was used to monitor each colorant at its maximum absorbance wavelength. The selected mobile phase for the gradient elution program enabled the shortening of total analysis time when compared to other chromatographic methods. Furthermore, since acetonitrile as the conventional solvent was not used in the eluent, solution costs were minimized.
- 2)On-line HPLC-CUPRAC was adapted for the determination of synthetic food colorants. Optimized gradient elution program was used for the separation of colorants. Retention time periods were increased due to additional installation for derivatization coil. However, LOD values were decreased with on-line HPLC-CUPRAC method.

+ Conclusions

• Two-way ANOVA test results were calculated for CUPRAC, HPLC (with CUPRAC calculations) ve on-line HPLC-CUPRAC (P= 0,05; $F_{experimental} = 0,26$; $F_{critical} = 18,51$; $F_{experimental} < F_{critical}$) with 95% confidence levels.

