

Antibacterial effect of plant oils rich in medium chain fatty acids and their possible interactions with antibiotics

<u>Skrivanova E</u>., Lalouckova K., Soukup J.

University of Life Sciences in Prague, CZ

Introduction

Antibiotic resistance

Ban of using in-feed antibiotics in animal production

Search for new alternatives

Alternatives?

Probiotics

Prebiotics

Bacteriocins

Enzymes

Bacteriophages

Plant extracts

Organic acids

WHY?

MCFA as a possible alternative to in-feed antibiotics?

Inhibitory activity in vitro

Mechanism of action

✤In vivo testing

The influence of production traits, GIT microbiota, toxicology,...

Experimental infections

Application form

Economy, combinations

Aims

To determine the antibacterial effect of medium-chain fatty acids (MCFA) and oils rich in MCFA

To analyse MCFA contents of the tested oils

MCFA & oils

Oil	Source
Coconut oil (Cocos nucifera)	Sigma-Aldrich, ČR
Palm kernel oil (Elais guineensis)	Sigma-Aldrich, ČR
Cuphea oil (C. lanceolata a C. ignea)	USDA-ARS, USA
Palm oil(Elais guineensis)	SNB, USA
Palm red oil (Elais guineensis)	SNB, USA
Babassu oil (Attalea speciosa)	SNB, USA
Tucuma oil (Astrocaryum vulgare)	SNB, USA
Muru-muru oil (Astrocaryum murumuru)	SNB, USA

Free MCFA: $C_6 - C_{12}$

- endosperm (jádro) => palmojádrový olej
- dissolved in DMSO + Tween 80, diluted in growth medium for a certain bacterium
- with or without pancreatic lipase
- 37°C dissolved and/or hydrolyzed

Bacterial strains

Bacterium	Strain
Escherichia coli	ATCC 29522 C6
Enterococcus cecorum	CCM 3659 [⊤] CCM 4285
Campylobacter jejuni	CCM 6189 CAMP/VFU 612/21
Clostridium perfringens	CIP 105178 CNCTC 5454 UGent 56
Listeria monocytogenes	ATCC 7644

Bacterium	Strain
Salmonella enteritidis	ATCC 13076
Salmonella infantis	К2
Salmonella typhimurium	КЗ
Staphylococcus aureus	ATCC 25923
Bifidobacterium animalis	CCM 4988 MA5
Bifidobacterium longum	CCM 4990 TP1
Lactobacillus acidophilus	CCM 4833
Lactobacillus fermentum	CCM 91

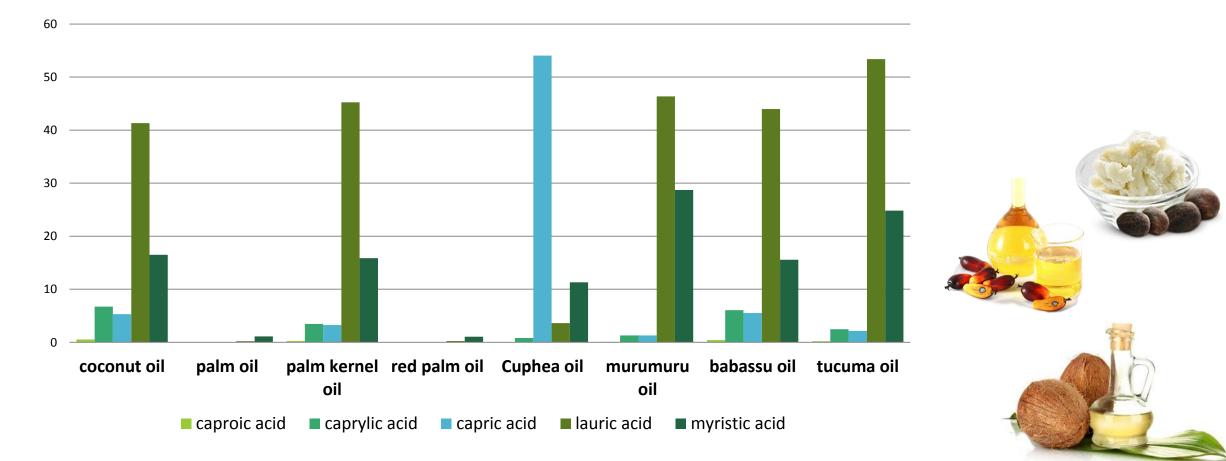
In vitro determination of MIC

- Broth microdilution method in 96-well plate
- 24/48 h incubation in aerobic/microaerophilic/anaerobic conditions at 37 °C

		96-we	li plate	e desig	n (accor	ding to	Cos et a	1., 2006;	Hecht e	et al., 20	07)		
	x		Strain 1			DK			Strain	2	x	x	
	1	2	3	4	5	6	7	8	9	10	11	12	
Α	м	4,5	4,5	4,5	4,5	4,5	4,5	4,5	4,5	4,5	М	м	
В	м	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25	М	м	
С	м	1,125	1,125	1,125	1,125	1,125	1,125	1,125	1,125	1,125	М	м	legenda: DK – dilution control
D	м	0,5625	0,5625	0,5625	0,5625	0,5625	0,5625	0,5625	0,5625	0,5625	М	м	 PK – positive control NK – negative control M – pure medium
E	м	0,2812	0,2812	0,2812	0,2812	0,2812	0,2812	0,2812	0,2812	0,2812	М	м	
F	м	0,1406	0,1406	0,1406	0,1406	0,1406	0,1406	0,1406	0,1406	0,1406	М	м	
G	м	0,0703	0,0703	0,0703	0,0703	0,0703	0,0703	0,0703	0,0703	0,0703	М	м	
н	м	PK1	PK1	PK1	NK	NK	NK	PK2	PK2	PK?	М	м	

06 wall plate design (according to Cas at al. 2006; Hacht at al. 2007)

In vitro determination of MIC


After the incubation: absorbance at 405 nm (Infinite [®] 200 PRO Microplate Reader; Tecan)
 Pipetting performed by the automatic pipetting station Freedom EVO 100 (Tecan)

MIC = minimal concentration, where at least 80% cell growth reduction occured (vs. positive control)

MCFA contents of oils: gas chromatography (GC-FID) according to ISO 5509 (2001)

Results: MCFA profile of selected oils (mg/kg)

Results: MIC (mg/mL)

	В	A	В	L	C	CJ CP		ECe		ECo		LA	LF	LM	SE	SI	ST	SA		
Oil origin	CCM 4988	MA5	CCM 4990	ITPI	CAMP/VFU 612/21	CCM 6189	CNCTC 3659	UGent 56	CIP 105178	CCM 3659	CCM 4285	ATCC 29522	C6	CCM 4833	CCM 91	ATCC 7644	ATCC 13076	K2	K3	ATCC 25923
coconut																				
palm																				
red palm																				
palm kernel																				
Cuphea																				
muru-muru																				
tucuma																				
babassu																				

BA – B. animalis, **BL** – B. longum, **CJ** – C. jejuni, **CP** – C. perfringens, **ECe** – E. cecorum, **ECo** – E. coli, **LA** – L. acidophilus, **LF** – L. fermentum, **LM** – L. monocytogenes, **SE** – S. enteritidis, **SI** – S. infantis, **ST** – S. typhimurium, **SA** – S. aureus

MIC (mg/mL): 0,14 0,28 0,56 1,12 2,25 4,5 >4,5

Conclusion

Gram-positive bacteria were sensitive after lipase digestion
Free MCFA or monoglycerides

Cuphea oil
the widest effect (7 bacterial strains)

Tucuma oil

the strongest effect (MIC 0.14 mg/mL)

No effect on benefitial bacteria!

Thank you!

University of Life Sciences in Prague

- Faculty of Agrobiology, Food and Natural Resources
- Faculty of Tropical AgriSciences

Institute of Animal Science Prague

• Dpt. of Physiology of Nutrition and Animal Products Quality

