World Congress and Exhibition on Construction and Steel Structure

Dubai, UAE November 16-18, 2015

Behaviors of Flag-Shaped Dampers Using Combination of Magnetic Friction and Rubber Springs

Eunsoo Choi, Gyuchan Choi, Yunjeong Son, Seungmin Gin

Speaker : Yunjeong Son Master's Course, Hongik University 2015.11.17

Contents

- Background & Objective
- Magnetic-frictional damper dynamic Test
- Pre-compressed Rubber spring dynamic Test
- Smart damper dynamic Test
- Conclusions

Background & Objective

- Dampers are used to dissipate input energy and reduce vibration of a system.
- In civil engineering, they are mainly applied in the protection of bridges and building from seismic attacks.
- In addition, they are used to control the vibration of structures induced by vehicles, human-being, or environmental loadings.
- Therefore, several type of dampers are developed, including fluid dampers, frictional dampers, metallic dampers, and SMA dampers.

Background & Objective

- Several type of dampers
 - Viscosity(fluid) damper → Long time usage of liquid based damper creates high possibilities of liquid leaks
 - Damper using memory alloy(SMA damper) → New materials have a problem of being uneconomical.
 - □ Frictional damper(Using bolt tension) → Slight variation of bolt-tension or the surface-condition of frictional material may reduce frictional force.

<Viscosity damper>

<SMA damper>

<frictional damper>

Proposed a new concept of a smart damper using magnet and rubber spring.

Background & Objective

• Concept of smart damper

- A new concept of smart damper will be proposed that using the friction of permanent magnets and pre-compressed rubber spring.
- The magnetic friction provides energy dissipation capacity.
- The pre-compressed rubber springs provides self-centering capacity.
- The combination of magnetic friction and pre-compressed rubber springs generates 'flag-shaped' behavior for a smart damper.

Dynamic tests of magnetic friction damper

• Experiment Preparation

➤ The pulling force is 800N for each magnet.

Department of Structural

Engineering,

<Shape of the Magnet>

<Tensile test of the magnet>

Identify the friction force and frictional coefficient by controlling the number of magnets and frequency of the UTM.

<Dynamic experiment preparation of magnetic damper >

Dynamic tests of magnetic friction damper

Department of Structural

Engineering,

- Experiment procedure
 - The experiment is proceeded by changing the number of magnets in the order of 2, 4, 6, 8, 10, 12 magnets each.
 - The experiment is proceeded by controlling the frequency of UTM in the order of 0.1, 0.25, 0.5, 0.75, 1, 2 Hz.
 - Stroke is controlled in consideration of the Performance curve of the UTM.

No. of frequency	Stroke
0.10 Hz	± 10 mm
0.20 Hz	± 10 mm
0.50 Hz	± 10 mm
0.75 Hz	± 5 mm
1.00 Hz	± 5 mm
2.00 Hz	± 2 mm

<UTM Perfomance curve>

Engineering,

Dynamic tests of magnetic friction damper

Result of magnets adhered

<8 magnets adhered>

<12 magnets adhered>

Magnets	0.1 Hz	0.25 Hz	0.5 Hz	0.75 Hz	1 Hz	2 Hz	
4 magnets	1.51	1.58	1.64	1.68	1.73	1.82	
8 magnets	3.05	3.35	3.44	3.35	3.45	3.5	
12 magnets	4.75	4.86	5.1	4.95	5.05	4.92	(kN)

<Friction forces along with magnets number>

Dynamic tests of magnetic friction damper

Department of Structural

Engineering,

• Estimation of friction force

• The friction force depending on in number of magnets was a linear increase.

Hongik University Dynamic tests of magnetic friction damper

Estimation of frictional coefficient. •

$$F = \mu N \quad F = kn$$
$$N = 0.8n \quad \mu = \frac{k}{0.8}$$

: Frictional force F

Ν

- : Frictional coefficient μ
- k : Slope of the regression line
- *n* : Number of magnet
- : Normal force induced by magnetic force

Engineering,

Frictional force as a function of number of magnet (and regression line)

Frictional coefficient of the damper in a 3D graph

Frictional coefficient of average and regression

10

Pre-compressed rubber springs test

- Purpose of experiment
 - In order to develop the rubber spring + magnetic-frictional damper system, we made experimental rubber spring model.
 - Experimental test identify the behavior of the rubber spring and performing dynamic test. And the control frequency is 0.1-2Hz
- Preparation of Experiment

<Shape of the rubber spring>

<Test for dynamic tests>

Pre-compressed rubber springs test

• Rubber spring's behavior

- Compression until 25 mm (31.25 % strain)
- Residual deformation : 3.2 mm (4.0% strain)
- Recovery deformation : 2 mm (2.5% strain)
- Remained deformation : 1.2 mm (1.5% strain)

 The rubber spring should be initially compressed by at least 4.0% strain to prevent a slack behavior during vibrational cycles.

Pre-compressed rubber springs test

• Effect of pre-compression

• **Pre-compression** $< \Delta 1$ The second cycle begins with a gap.

• $\Delta 1 < Pre-compression < \Delta 2$ The deformation set is removed by the pre-compression. But, the recovered deformation remains.

• Δ2 < pre-compression

The behavior shows a rigid behavior up to the first loading path hen the unloading stops with remaining force and the curve goes up to the second loading path rigidly.

<Effect of precompression in the rubber spring>

Department of Structural

Engineering, Hongik University

Pre-compressed rubber springs test

Rubber spring's behavior along with pre-compression ۲

< Force-deformation curves of the rubber springs >

Pre-compressed rubber springs test

• Determination of pre-compression strain

$$y = 1.1254x - 5.585$$

- Frictional force for 8 magnets is 4.2 kN.
- From the equation, we obtained the corresponding strain (8.69%)
- In this study, use 10% (8.0 mm deformation) pre-compression strain

Smart damper dynamic test

• Shape of the smart damper

(a) Drawing of outer cylinder (b) Drawing of inner piston (c) Drawing of damper

<Drawing of smart damper>

Smart damper dynamic test

• Experiment preparation

(a) Before pre-compression

(c) Dynamic test

<Experiment preparation>

(b) Pre-compression

Smart damper dynamic test

• Determination of pre-compression strain

- Rigid force for self-centering > Frictional force
 - Return to the origin position

- Rigid force for self-centering < Frictional force
 - Remain residual displacement

Smart damper dynamic test

• Determination of pre-compression strain

- 8 magnets
 - Return to the origin position
 - The unloading rigid force of the pre-compressed rubber spring should be greater than the magnetic friction.

Smart damper dynamic test

• Results of vibration tests (8 magnets)

<Graph of symmetric behavior along with frequency>

Smart damper dynamic test

• Symmetric behavior of the smart damper

<Comparison with symmetric behavior>

Smart damper dynamic test

• Damping ratios of the hysteretic curves

Frequency (Hz)	No. of magnets						
	0	4	8	12			
0.1	3.19	4.04	5.32	6.55			
0.25	2.51	3.93	5.21	6.91			
0.5	2.90	4.06	5.40	7.21			
0.75	2.51	4.16	6.16	7.81			
<u>Average</u>	<u>2.78</u>	<u>4.05</u>	<u>5.52</u>	<u>7.12</u>			
1.0	3.28	4.96	6.85	8.76			
1.5	3.63	6.16	9.02	11.62			
2.0	3.53	6.32	10.24	13.41			

 $\xi = \frac{E_d}{4\pi E}$

- Damping ratios seemed not to increase with increasing loading frequency.
- Damping ratio increased almost linearly with an increasing number of magnets.

< Damping ratio according to frequency and No. of magnets (%) >

Smart damper dynamic test

• Asymmetric behavior of the smart damper

(the proposed smart damper can easily produce asymmetric behavior with the removal one rubber spring)

- The damper will provide only friction in one direction and friction plus rubber spring force in the opposite direction.
- Asymmetric damper would be useful for structures or systems that have resisting capacities that vary according to direction.
- For a bridge, abutments generally have strong resisting capacity in passive action (pushing) but relatively small resistance in active action (pulling).

Smart damper dynamic test

• Asymmetric behavior of the smart damper

<Asymmetric behavior of the smart damper>

Conclusion

Department of Structural Engineering, Hongik University

- This study proposed a new concept of a smart damper using pre-compressed rubber springs and magnetic friction. The performance of the magnets and pre-compressed rubber springs was verified through the dynamic.
- The damper with only rubber springs of 8% strain pre-compression excluding magnetic friction showed flag-shaped behavior; thus, the damper provided self-centering capacity and energy dissipation with a damping ratio of 2.7%.
- Additionally, the proposed damper can be used to support or control vibration of pipes in power plants and also it may be applied to structural parts such as beamcolumn-connections and bracing in moment frames because inexpensive materials is used, its mechanism is relatively simple, and prove that it provide self-centering and energy dissipation.

Thank you for your attention

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (Project No. 2015-041523).