

EUN JOO LEE M.D, Ph.D.¹. Woo Tack Kim, M.D., Ph.D.²

- 1. Department of Pediatrics, Kyungpook National University School of Medicine, Daegu, Korea
- 2. Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea

Disclosure

- I have no relevant financial relationships to disclose or conflicts of interest to resolve
- I will not discuss any unapproved or off-label, experimental or investigational use of a product, drug or device.

- Hypoxia and ischemia
 - Essential factors of neonatal hypoxic-ischemic encephalopathy.
 - Many biochemical changes
 - Involvement of multiple signal transduction cascades

- Hypoxia/Ischemia
 - Involvement of signaling pathways for apoptosis
 - Its modification \rightarrow neuroprotection

• Bee venom

- Anticancer mechanisms under hypoxia
- Modification of signaling pathways for apoptosis

Bee venom (BV)

- Contains various peptides, enzymes and non-peptide components
- **BV peptides**; melittin, apamin, mast cell degranulation peptide and adolapin
- Enzymes; phospholipase A2, hyaluronidase, phosphomonoestrase, α-d-glucosidase and lypophospholipase
- Non-peptide components; histamine, dopamines, noradrenaline, carbohydrates and some lipids

Bee venom

- Anti-inflammatory, anti-neurotoxic, antibacterial, anti-allergic, and anti-hypertensive effects and regulatory functions in the autonomic nervous system (*Choi et al 2014, Lee et al 2012, Kwon et al 2001, Park et al 2008, Boman et al 1989*)
- Rheumatoid arthritis, Parkinson's disease, multiple sclerosis, neuro-muscular pain syndrome, skin disease and immune

disease (Wu 2014, Cho et al 2010)

Background BV and neuroprotection

- Bee Venom and Its Component Apamin as Neuroprotective Agents in a Parkinson Disease Mouse Model (Alvarez-Fischer, D., et al. (2013))
- A secretory phospholipase A2-mediated **neuroprotection** and anti-apoptosis(Armugam, A., et al. (2009))
- Bee Venom Phospholipase A2, a Novel Foxp3+ Regulatory T Cell Inducer, Protects Dopaminergic Neurons by Modulating Neuroinflammatory Responses in a Mouse Model of Parkinson's Disease(Chung, E. S., et al. (2015))
- Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells (Jung, S. Y., et al. (2015))
- Apitoxin protects rat pups brain from propionic acid-induced oxidative stress: The expression pattern of Bcl-2 and Caspase-3 apoptotic genes (Khalil, S. R., et al. (2015))

- Anti-inflammatory effect of BV
 - Inhibiting NF-kB activation and modulating the expression of various inflammatory cytokines such as tumor necrosis factor alpha (*Choi et al 2014, Lee et al 2012*)
 - Downregulates inducible nitric oxide synthase and cyclooxygenase-2, possibly through NF-kB and MAPK activation in neuronal and glial cells (*Lee et al 2012, Tu eat al 2011*)
 - Melittin; decrease the expression of inflammatory cytokines through the regulation of NK-kB and MAPK signaling pathways (Lee et al 2014)

MAPK pathways

- Mainly composed of key regulatory protein
- Control inflammation and physiologic processes
- Regulated by phosphorylation cascades
- At least 3 distinct group MAPKs in mammals

MAPK pathways

- Mainly composed of key regulatory protein
- Control inflammation and physiologic processes
- Regulated by phosphorylation cascades
- At least 3 distinct group MAPKs in mammals
 - Extracellular signal-regulated protein kinase 1/2 (ERK 1/2)
 - Stress-activated protein kinases (SAPK/JNK)

Gomgomi & Friends

Front Microbiol. 2016 Feb 24;7:183

- 1) the effects of BV on cell viability following hypoxia with low glucose condition in neuronal cells and astrocytes
- 2) their neuroprotective mechanisms through expression of the activated MAPK pathways, including ERK, p38MAPK, and SAPK/JNK.

Results

Optimal concentration of BV

Neuronal Cells

Optimal concentration of BV

Cell viability

Neuronal cells

Cell viability

Neuronal Cells

Ν

0

6

Time after hypoxia with low glucose (h)

15

24

6

Time after hypoxia with low glucose (h)

kDa

43

43

H+low G

BV (0.4µg/m2)

N

0h

6h

15h

24h

++

Neuronal Cells

SAPK/JNK

Neuronal Cells

0

Ν

6

Time after hypoxia with low glucose (h)

15

24

Time after hypoxia with low glucose (h)

SAPK/JNK

Time after hypoxia with low glucose (h)

Conclusion

- Phosphorylation of all MAPKs and reduction of cell survival after hypoxia and low G condition.
- Improved cell viability with BV pretreatment
- Inhibition of phosphorylation of ERK1/2 in BV pretreated neuronal cells and the astrocytes following H+low G condition
- No effects on p38MAPK and SAPK/JNK with BV pretreatment
- BV has neuroprotective effect through ERK1/2 mediated mechanism.

Acknowledgement

