

The role of LB thin protein film in protein crystal growth by LB nanotemlate and robot

Prof. Eugenia Pechkova

Laboratories of Biophysics and Nanobiotechnology

University of Genova

Thin Film Technologies

Barrier position, mm

LB nanotemplate protein crystallization method

Pechkova E, Nicolini C., *Protein nanocrystallography: a new approach to structural proteomics*, Trends in Biotechnology 22, 117-122, 2004.

Isotherm and Atomic Force Microscopy of Lysozyme Langmuir-Blodgett film.

Lysozyme surface pressure

AFM images (in air): LB film (2 monolayers) of thaumatin (24 kDa) at 200 nm scale

Nanogravimetric measuarments

Protein surface density

Human protein kinase CK2α (MW 45 kDa) Cytochrome P450 scc (MW 56 kDa)

Film packing (area per molecule)

Test proteins for classical vs LB nanotemplate crystallization

Lysozyme Chicken Egg White

MW≅14KDa

Thermolysin *Bacillus thermoproteolyticus MW≅35KDa*

Thaumatin *Thaumatococcus Daniellii MW≅22KDa*

Ribonuclease A *Bovine Pancreas*

*MW≅*14KDa

Proteinase K *Tritirachium album*

MW≅29KDa

Dependence of the surface density of deposited ribonuclease A, thaumatin, proteinase K and lysozyme nanostructured films upon the number of transferred protein mono-layers, at 20 mN/m of pressure.

Pechkova E, Nicolini C, From art to science in protein crystallization by means of thin film technology, Nanotechnology 13, 460-464, 2002.

Protein crystallization conditions used for both LB and classical hanging drop vapour diffusion method. The cryo-protectant used during the X ray diffraction data collection is also indicated

Protein	Protein	Reservoir solution	Drop	Cryoprotectant
	solution			
Proteinase K	20 mg/ml in	400 mM Na/K-	1:1	4M TMAO
	25 mM	tartrate in 25 mM		
	HEPES	HEPES buffer pH 7		
	buffer pH 7			
Ribonuclease	10 mg/ml in	1.75 M (NH ₄) ₂ SO ₄	1:1	Mother liquid
А	50 mM Na-	2M NaCl in 100mM		
	acetate pH	Na-acetate pH 5.5		
	5.5			
Thaumatin	15 mg/ml in	1 M Na/K in 100	1:1	30% Glycerol,
	100 mM	mM ADA buffer		0.7M Na/K in
	ADA	tartrate pH 6.5		100 mM ADA
	buffer pH			buffer tartrate
	6.5			рН 6.5
Thermolysin	100 mg/ml	35% saturated	1:1 with	Dry Paraton-N
-	in 50 Mm	$(NH_4)_2SO_4$	$1\mathbf{M}$	(0.5h in vacuum
	MES pH 6.0		NaCl in	centrifuge)
	•		50mM	
			MES pH	
			6.0	
Insulin	18 mg/ml in	400 mM Na₂HPO₄	1:1	30% Glycerol
(Zn-free)	50 mM	pH 10.4		in400 mM
(Na ₂ HPO ₄ pH	10 mM EDTA		Na ₂ HPO ₄ pH
	10.4			10.4
	1 mM			10 mM EDTA
	EDTA			
Lysozyme	40 mg/ml in	0.9 M NaCl	1:1	20% Glycerol in
	50 mM			0.9 M NaCl
	NaAc buffer			
	pH 4 5			
	P** '			

Classical Proteinase K crystal

LB Proteinase K crystal

Ribonuclease A

Screening test for thaumatin "critical" concentration. A: screening test for ribonuclease A "critical" concentration. B: screening test for proteinase K "critical" concentration

В

A

A: critical concentration for proteinase K with classical vapor diffusion method. B: critical concentration for thaumatin with classical vapor diffusion method. C: critical concentration for ribonuclease A with classical vapor diffusion method.

RESULTS	Standard protocol concentration	Critical concentration
Lysozyme	40 mg/ml	5 mg/ml
Proteinasi K	20 mg/ml	9.5 mg/ml
Thaumatin	15 mg/ml	2 mg/ml
Ribonucleasi A	10 mg/ml	4 mg/ml

Effects of LB template in crystal growth (in brackets number of crystals), Effect A: template facilitates nucleation step. LB crystals grow earlier than classical, Effect B: template facilitates crystal growth. LB crystals grow larger than classical.

Phase Diagrammes of Proteinase K, Ribonuclease K, Thaumatin and Lysozyme (clockvise)

European Synchrotron Radiation Facility (ESRF), Grenoble, France

Brilliance of the X-ray beams (photons/s/mm²/mrad²/0.1% BW)

Beamline at ESRF	Protein crystal and method	Number of	Crystal size (µm)	Beam size (µm)	Total radiation
	Of preparation	crystal			dose (MGy)
		being			
		studied			
ID13	Lysozyme classical	2	400×200×100	20×20	10 (500s exposure)
ID13	Lysozyme LB	2	750×375×190	20×20	100 (4800s exposure)
	Lysozyme LB	2	Less than 1 µm	0.5×0.5	-
ID29	Thaumatin classical	1	100×200×150	100×100	9.5
ID29	Thaumatin LB	3	100×300×150	100×100	9.5
ID23–1	Proteinase K classical	1	200×100×150	80×60	44,1
ID23–1	Proteinase K LB	1	200×100×150	80×60	44,1
ID14–2	Proteinase K classical	1	200×300×100	160×200	2.4
ID14–2	Proteinase K LB	3	160×200×50	160×200	2.43
			300×200×200	100×100	2.22
			350×300×300	100×100	2.16
ID14–2	Ribonuclease classical	1	140×140×50	140×140	4.06
ID14–2	Ribonuclease LB	1	140×140×50	140×140	4.96

LB and classical protein crystals analyzed at the different ESRF beamlines.

Electron density of crystals grown using robotic technique for LB-based nanotemplate method and classical method.. A: comparison of electron density map for carboxilic acid group of aspartic acid at 55 position contoured at 2.01sigma. B: comparison of electron density map of disulphide bond of cystein residue at 71 position contoured at 2.5 sigma. C: comparison of electron density map of disulphide bond of cystein residue at 149 position contoured at 2.5 sigma. D: comparison of electron density map of proline residue at 135 position of classical and LB crystal contoured at 2.5 sigma. E: comparison of electron density map of cysteine residue at 159 position of classical and LB crystal contoured at 2.5 sigma. From left to right and from top down.

After Burn

Before Burn

The tubes connected with pamps fo the salt solution exchange:

Cs=Cd "stop solution" for aliement procedure

Cs»Cd for accelerated nucleation

Cs=2Cd for controlled grouth

Setup of μ GISAXS setup at ID13 beamline/ESRF. The flow through crystallisation cell is tilted by ϕ y to adjust a fixed angle of incidence (α i). As typical features the Yoneda Peak (Y) at α_c and the specular peak at $\alpha_f = \alpha$ i are shown in the 2d GISAXS pattern.

Figure 3. Actual experimental configuration

MODEL for reaction pathways on LB-film

Pechkova, Gebhardt, Riekel, Nicolini, Biophysical Journal, Part I, 2010 Gebhardt, Pechkova, Rielel, Nicolini, Biophysical Journal, Part II, 2010