Biological mechanisms of muscle mass loss and cachexia in patients with COPD

Proceedings of 3rd International Conference on

Chronic Obstructive Pulmonary Disease

July 11-12, 2016 Brisbane, Australia

Mar, Parc de Salut Mar, UPF, PRBB, CIBERES, Barcelona, Spain

Presenter Disclosures

ESTHER BARREIRO

(1) The following relationships with commercial interests related to this presentation existed during the past 12 months:

"No relationships to disclose"

Chronic obstructive pulmonary disease (COPD) Skeletal muscle dysfunction Exercise intolerance **PROGNOSIS VALUE**

EVIDENCE OF MUSCLE DYSFUNCTION

Gosselink et al. AJRCCM 1996; 153. 976-80

PREVALENCE OF QUADRICEPS DYSFUNCTION IN COPD PATIENTS

TABLE 3

Prevalence of quadriceps weakness in chronic obstructive pulmonary disease (COPD)

	UK Healthy	COPD		
		UK	the Netherlands	UK and the Netherlands
Male				
Subjects n	94	161	200	361
BMI kg⋅m ⁻²	26.1 <u>+</u> 3.3	24.4 ± 4.8 [#]	24.2 ± 4.5 [#]	24.6±4.4 [#]
FFM index kg·m ⁻²	18.8 <u>+</u> 2.0	16.6±2.2 [#]	16.6 <u>+</u> 2.0 [#]	16.6±2.1 [#]
QMVC kg	46.9 <u>+</u> 12.3	35.2±10.7 [#]	33.9 <u>+</u> 10.6 [#]	34.4±10.6 [#]
COPD patients with weak QMVC n (%)		45 (28)	68 (34)	113 (31)#
Female				
Subjects n	118	79	151	230
BMI kg·m ⁻²	24.1 ± 4.2 ¶	24.4 <u>+</u> 5.0	23.2 <u>+</u> 4.2 [¶]	23.6±4.6 [#]
FFM index kg·m ⁻²	15.2 <u>+</u> 1.2 [¶]	15.4±1.9¶	14.6 ± 1.5 ^{#,¶,+}	14.9±1.9 ^{#,¶}
QMVC kg	33.6 <u>+</u> 8.4¶	25.7 <u>+</u> 9.9 ^{#,¶}	24.6 <u>+</u> 6.9 ^{#,¶}	24.9±8.1 ^{#,¶}
COPD patients with weak QMVC n (%)		31 (39)	47 (31)	78 (34)
Male and female				
Subjects n	212	240	351	591
BMI kg·m ⁻²	24.9±3.9	24.4 <u>+</u> 4.8	23.8 ± 4.4 [#]	24.0±4.6 [#]
FFM index kg·m ⁻²	16.8 <u>+</u> 2.6	16.2 <u>+</u> 2.2 [#]	15.7 <u>+</u> 2.1 ^{#,+}	15.9 <u>+</u> 2.1 [#]
QMVC kg	39.5 <u>+</u> 12.3	32.0±11.3 [#]	29.9 <u>+</u> 10.4 ^{#,+}	30.7 <u>+</u> 10.8 [#]
COPD patients with weak QMVC n (%)		76 (32)	115 (33)	191 (32)

1/3 of the patients

Data are presented as mean \pm sD, unless otherwise stated, for patients diagnosed with quadriceps weakness, split by sex and disease cohort. Body mass index (BMI), fat-free mass (FFM) index and quadriceps maximum voluntary contraction strength (QMVC) in each group are shown for reference. #: p<0.05 compared with healthy subjects; 1: p<0.05 between males and females; +: p<0.05 between UK and Dutch COPD patients. Seymour *et al. Eur Respir J* 2010; 36: 81-88

QUADRICEPS WEAKNESS & DISEASE SEVERITY IN COPD PATIENTS

QUADRICEPS WEAKNESS & ATROPHY PREDICT MORTALITY IN COPD PATIENTS

QMVC is simple and provides better prognostic information than other parameters (age, BMI, and FEV1) in COPD

Midthigh muscle cross sectional area is a better predictor of mortality than BMI in COPD patients

4 different phenoptyes of COPD patients

BODY COMPOSITION & MORTALITY IN COPD

FIGURE 2. Kaplan-Meier plot of survival in different body-composition categories. Category 1 (cachexia; n = 117), solid black line; category 2 (semistarvation; n = 23), solid gray line; category 3 (muscle atrophy; n = 40), dashed gray line; category 4 (no impairment; n = 232), dashed black line. Median (95% CI) survival was significantly (P < 0.001) less in patients with cachexia (26 mo; 21, 31 mo) and muscle atrophy (24 mo; 15, 33 mo) than in patients with semistarvation (36 mo; 28, 44 mo) or no impairment (47 mo; 37, 57 mo). The survival plot of the semistarvation category during the first 3 y.

FIBER TYPE SHIFT & MORTALITY IN COPD

Skeletal muscle dysfunction in COPD patients: Mechanisms

MULTIFACTORIAL ETIOLOGY OF MUSCLE DYSFUNCTION IN COPD

OCCASIONAL ESSAY

Muscle Dysfunction in Patients with Lung Diseases A Growing Epidemic

Esther Barreiro^{1,2}, Jacob I. Sznajder³, Gustavo A. Nader^{4,5}, and G. R. Scott Budinger³

¹Respiratory Medicine Department–Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park, Barcelona, Spain; ²Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; ³Pulmonary and Critical Care Medicine Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; ⁴Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden; and ⁵Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania

Am J Respir Crit Care Med Vol 191, Iss 6, pp 616–619, Mar 15, 2015 Copyright © 2015 by the American Thoracic Society DOI: 10.1164/rccm.201412-2189OE Internet address: www.atsjournals.org Editorial

HIGHLIGHTED TOPIC | Muscle Dysfunction in COPD

Muscle dysfunction in COPD

Esther Barreiro^{1,2} and Gary Sieck³

- 1.- Pathophysiology of muscle dysfunction in COPD.
- 2.- Motor control in muscle dysfunction in COPD.
- 3.- Muscle remodeling in COPD.
- 4.- Role of cachexia in COPD muscle dysfunction.
- 5.- Role of epigenetics in COPD muscle dysfunction.
- 6.- Role of autophagy in COPD muscle dysfunction.
- 7.- Metabolic derangements in COPD muscle dysfunction.
- 8.- Mechanisms of muscle dysfunction during acute exacerbations in COPD.
- 9.- Should all COPD patients be trained? Who, when, and how? Pros and cons.

AMERICAN THORACIC SOCIETY DOCUMENTS

An Official American Thoracic Society/European Respiratory Society Statement: Update on Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease

Executive Summary

François Maltais, Marc Decramer, Richard Casaburi, Esther Barreiro, Yan Burelle, Richard Debigaré, P. N. Richard Dekhuijzen, Frits Franssen, Ghislaine Gayan-Ramirez, Joaquim Gea, Harry R. Gosker, Rik Gosselink, Maurice Hayot, Sabah N. A. Hussain, Wim Janssens, Michael I. Polkey, Josep Roca, Didier Saey, Annemie M. W. J. Schols, Martijn A. Spruit, Michael Steiner, Tanja Taivassalo, Thierry Troosters, Ioannis Vogiatzis, and Peter D. Wagner; on behalf of the ATS/ERS Ad Hoc Committee on Limb Muscle Dysfunction in COPD

This official statement of the American Thoracic Society (ATS) and the European Respiratory Society (ERS) was approved by the ATS Board of Directors, November 2013, and by the ERS Executive Committee, September 2013

Maltais F et al. Am J Respir Crit Care Med 2014; 189: e15-62.

SPANISH GUIDELINES ON MUSCLE DYSFUNCTION IN COPD

Arch Bronconeumol. 2015;51(8):384-395

ARCHIVOS DE BRONCONEUMOLOGIA

www.archbronconeumol.org

Recommendations of SEPAR

Guidelines for the Evaluation and Treatment of Muscle Dysfunction in Patients With Chronic Obstructive Pulmonary Disease[☆]

Esther Barreiro,^{a,b,*} Víctor Bustamante,^c Pilar Cejudo,^d Juan B. Gáldiz,^{b,e} Joaquim Gea,^{a,b} Pilar de Lucas,^f Juana Martínez-Llorens,^{a,b} Francisco Ortega,^{b,d} Luis Puente-Maestu,^f Josep Roca,^{b,g} José Miguel Rodríguez González-Moro^f

^a Servei de Pneumologia, Unitat de Recerca en Múscul i Aparell Respiratori (URMAR), IMIM-Hospital del Mar, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, España

- ^f Servicio de Neumología, Hospital General Gregorio Marañón, Universidad Complutense de Madrid, Madrid, España
- ^g Servei de Pneumologia, Hospital Clínic de Barcelona, Barcelona, España

^b CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, España

^c Hospital Universitario Basurto, Osakidetza, Departamento de Medicina, Universidad del País Vasco, Bilbao, España

^d Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, Sevilla, España

e Servicio de Neumología y Unidad de Investigación, Hospital de Cruces, Universidad del País Vasco, Barakaldo, España

LIMB MUSCLES: VASTUS LATERALIS

Open muscle biopsy technique

BIOLOGICAL MECHANISMS OF MUSCLE DYSFUNCTION IN COPD

Barreiro et al. COPD 2015; 12: 413-26

MUSCLE MASS LOSS \Rightarrow ATROPHY

MUSCLE FIBER ATROPHY

Table 3. Structural characteristics of the vastus lateralis muscle in severe COPD patients and healthy controls

	Control subjects	Non-wasted severe COPD patients	Muscle-wasted severe COPD patients
	V	ASTUS LATERALIS	
Type I fibers, %	30 (5)	29 (7)	23 (6) *, †
Type II fibers, %	70 (5)	71 (7)	77 (6) *, †
Cross sectional area,			
type I fibers, μm ²	2581(278)	2452 (425)	2243 (514)
Cross sectional area,			
type II fibers, μm ²	2909 (540)	2880 (361)	2306 (533) *, †
Normal muscle, %	98.5 (0.4)	97.5 (0.7) **	97.5 (0.9) *
Abnormal muscle, %	1.5 (0.4)	2.5 (0.7) **	2.5 (0.9) *

MUSCLE FIBER SIZES

Cross-sections of muscle fibers, VL

Healthy control

LC Cachexia

COPD Cachexia

Respiratory cachexia

MUSCLE FIBER SIZES

Cross-sections of muscle	fibers, VL	Respirat	Respiratory cachexia	
	Controls N=10	LC <u>Cachexia</u> N= 10	COPD <u>Cachexia</u> N=10	
Muscle fiber type composition				
Type I fibers, percentages	31 (4)	28 (4)	23 (6) **	
Type II fibers, percentages	69 (4)	72 (4)	77 (6) **	
Type I <u>fibers</u> , CSA (μm²)	2920 (458)	<u>2639 (172)</u>	2582 (214)	
Type II <u>fibers</u> , CSA (μm²)	3279 (452)	2499 (594) *	2109 (416) **	
Muscle structure				
Percentage of total abnormal fraction area	1.49 (0.4)	2.39 (0.4) **	2.5 (0.9) **	
Percentage of internal nuclei	0.59 (0.4)	0.67 (0.3)	0.47 (0.3)	
Percentage of inflammatory cells	0.79 (0.3)	1.25 (0.5) *	1.34 (0.5) *	
Percentage of other items (§)	0.11 (0.1)	0.46 (0.2) **	0.68 (0.8) *	

SKELETAL MUSCLE DISRUPTIONS

SKELETAL MUSCLE DISRUPTIONS

LEVELS OF SPECIFIC MUSCLE PROTEINS

Structural proteins

LEVELS OF MUSCLE PROTEINS

Muscle metabolic enzymes, VL

NF-kB p65, 65 kDa

NF-KB, P65

FoxO-1, 80 kDa

Enhanced muscle proteolysis

Vastus lateralis, <u>stable COPD</u> patients:

Doucet et al. Am J Respir Crit Care Med 2007

Plant et al. Am J Respir Cell Mol Biol 2010

Fermoselle et al. Eur Respir J 2012, 40: 851-62

Several proteolytic mechanisms, VL

Vastus lateralis, COPD patients during exacerbations:

Crul et al. Cell Physiol Biochem 2010

SUPEROXIDE ANION IN THE MYONUCLEI

OXIDATIVE STRESS: MUSCLE & BLOOD

Respiratory cachexia

OXIDATIVE STRESS: CLINICAL IMPLICATIONS

OXIDATIVE STRESS: CLINICAL IMPLICATIONS

Endurance Exercise Training Protein tyrosine nitration

Rodriguez et al. Free Radic Biol Med 2012; 52: 88-94.

Endurance Exercise Training Muscle protein tyrosine nitration

Rodriguez et al. Free Radic Biol Med 2012; 52: 88-94.

Role of local inflammation in COPD ?

Cellular inflammation

Patients with COPD, Vastus lateralis

Barreiro et al. J Appl Physiol 2011; 111: 808-817

Cellular inflammation

Patients with COPD, Vastus lateralis

Table 4. Muscle inflammation in the human study subjects

	Control subjects n=10	Smokers n=9	COPD n=10
IL-6, pg/ml	0.29 (0.19)	0.23 (0.12)	0.32 (0.30)
TNF-alpha, pg/ml	1.64 (0.37)	1.72 (0.33)	1.64 (0.24)
Total inflammatory cells, cells/mm ²	0.99 (0.60)	0.88 (0.51)	2.57 (1.70) *, †

Systemic inflammation in COPD patients & muscle mass

APOPTOSIS, ELECTRON MICROSCOPY

Severe COPD patient

Early apoptosis

Late apoptosis

AUTOPHAGY IN MUSCLES

Autophagy markers, VL

AUTOPHAGY IN MUSCLES

Autophagosomes, VL

Healthy control

LC Cachexia

COPD Cachexia

Respiratory cachexia

EPIGENETIC MECHANISMS IN CELLS

AND IN MUSCLES...

	Action	Target Pathways
MyomiRs		
miR-1	Promotes myotube formation	HDAC4 (23, 56)
	Innervation process	Connexin 43-dependent gap junctional communication (5)
	0	IGF-1 signal transduction cascade (33, 56)
miR-206	Promotes myotube formation	Subunit p180 of DNA polymerase alpha (30, 71)
	Commitment to terminal cell differentiation	Inhibition of DNA synthesis & Cell cycle withdrawal (30, 71)
	Innervation process	Connexin 43-dependent gap junctional communication (5)
miR-133	Induces myoblast proliferation	Inhibition of myotube formation (23)
		Repression of SFR (23)
Other miRNAs		
miR-27	Entry of satellite cells into myogenic differentiation program	Pax3 mRNA, Satellite cells & embryonic myotomes (27)
miR-181	MyoD induction	Repressor of myoblast terminal differentiation Hox-A11 (70)
miR-29	Promotes myogenesis	Inhibition of Ying Yang 1 (92)

J Appl Physiol • doi:10.1152/japplphysiol.01027.2012 • www. Barreiro et al. J Appl Physiol 2013; 114: 1263-1272.

PATIENT CHARACTERISTICS

+/-Quadriceps weakness

	Controls	All COPD patients	Non-muscle weakness	Muscle weakness
	N = 19	N = 41	N = 16	N = 25
Anthropometry				
Age (years)	65 (8)	68 (6)	68 (6)	68 (5)
BMI (kg/m ²)	26 (3)	24 (5)*	26 (4)	22 (4) ^{§§} ¶¶
FFMI (kg/m ²)	19 (2)	16 (2)***	18 (2)	16 (2) ^{§§§¶}
Body weight (kg)	73 (8)	69 (13)	76 (12)	66 (13)555
Body weight change (kg/year)	0 (0)	-1.8 (2.4)***	-0.3 (2.5)	-2.8 (1.7) ^{§§§} ¶¶
Smoking history				
Active, N (%)	6, 32	16, 39	10, 63	6, 24 [¶]
Ex-smoker, N (%)	8, 42	25, 61	6, 37	19, 76 [¶]
Never smoker, N (%)	5,26	0, 0	0, 0	0, 0
Packs-year	54 (20)	61 (24)	59 (28)	62 (22)
Lung function				
FEV ₁ (% pred)	93 (12)	34 (15)***	51 (6) ^{§§§}	23 (5)§§§¶₩
FVC (% pred)	88 (9)	58 (18)***	76 (16)	50 (12) ^{§§§¶¶¶}
FEV ₁ /FVC (%)	73 (4)	44 (11)***	53 (9) ^{§§§}	38 (9) ^{§§§} ¶¶
RV (% pred)	105 (18)	198 (69)***	139 (44)	220 (63) ^{§§§} ¶¶
TLC (% pred)	101 (12)	109 (16)	105 (18)	111 (15)
RV/TLC	49 (23)	64 (11)***	54 (7)	70 (7) ^{§§§} ¶¶
DLco (% pred)	89 (14)	52 (26)***	71 (21) [§]	38 (21) ^{§§§¶¶¶}
K _{CO} (% pred)	87 (16)	63 (20)***	71 (19)	59 (20) ^{§§§}
PaO ₂ (kPa)	11.6 (1.1)	9.2 (1.2)***	9.5 (1.3) ^{§§}	9.0 (1) ⁵⁵⁸
PaCO ₂ (kPa)	5.2 (0.5)	5.6 (0.7)*	5.4 (0.8)	5.8 (0.5)
Exercise capacity and muscle function				\frown
VO ₂ peak (% pred)	87 (10)	48 (23)***	67 (16) [§]	31 (10) ^{§§§¶¶¶}
WR peak (% pred)	81 (21)	48 (26)***	64 (26) [§]	31 (12) ^{§§§¶}
6-min walking test (m)	508 (71)	412 (92)***	459 (69)	380 (93) ^{§§§¶}
QMVC (kg)	39 (2)	29 (3)***	32 (1)555	27 (1) ^{§§§} ¶¶
Blood parameters				
Albumin (g/dl)	4.3 (0.4)	4.4 (0.4)	4.3 (0.3)	4.4 (0.5)
Total proteins (g/dl)	7.2 (0.5)	7.3 (0.5)	7.1 (0.6)	7.3 (0.5)
CRP (mg/dl)	0.3 (0.2)	1.5 (2.2)**	0.5 (0.4)	2.5 (2.7) ^{§§} ¶¶
Fibrinogen (mg/dl)	311 (35)	412 (75)***	363 (53)	434 (74) ^{§§§¶}
GSV (mm/h)	6 (4)	28 (19)***	20 (11) [§]	32 (22) ^{§§§¶}

Puig-Vilanova *et al. Clin Sci* 2015; 128: 905-921.

MUSCLE FIBER TYPE CHARACTERISTICS

		COPD pa	itlents
Controls	All COPD patients	Non-muscle weakness	Muscle weakness
N = 19	N = 41	N = 16	N = 25
n			
39 (6)	27 (10)***	31 (10) [§]	26 (9) ^{§§}
61 (6)	73 (10)***	69 (10) [§]	74 (9) ^{§§}
2698 (894)	2496 (855)	2618 (960)	2438 (817)
2915 (755)	2436 (847)*	2807 (910)	2188 (718)
	Controls N = 19 n 39 (6) 61 (6) 2698 (894) 2915 (755)	ControlsAll COPD patients $N = 19$ $N = 41$ n39 (6)27 (10)***61 (6)73 (10)***2698 (894)2496 (855)2915 (755)2436 (847)*	ControlsAll COPD patlentsNon-muscle weakness $N = 19$ $N = 41$ $N = 16$ n39 (6)27 (10)***31 (10)§61 (6)73 (10)***69 (10)§2698 (894)2496 (855)2618 (960)2915 (755)2436 (847)*2807 (910)

MicroRNAs, VL

Puig-Vilanova et al. Clin Sci 2015; 128: 905-921.

§§,¶

Muscle-

Total protein and histone acetylation, VL

Puig-Vilanova et al. Clin Sci 2015; 128: 905-921.

COPD patients

COPD patients Puig-Vilanova et al. Clin Sci 2015; 128: 905-921.

COPD muscle dysfunction & wasting: Present & Future

ACKNOWLEDGMENTS

Proceedings of 3rd International Conference on **Chronic Obstructive Pulmonary Disease** July 11-12, 2016 Brisbane, Australia

THANK YOU FOR YOUR ATTENTION!