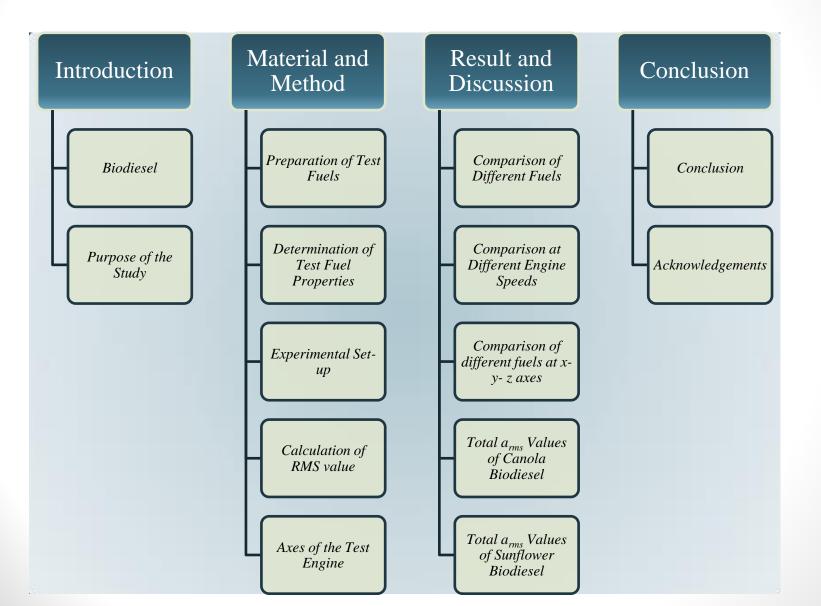
About OMICS Group

OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes 400 online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 300 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

Internationa

About OMICS Group Conferences

OMICS Group International is a pioneer and leading science event organizer, which publishes around 400 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.


OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai. International Conference and Exhibition on Automobile Engineering September 01-02, 2015 Valencia, Spain

VIBRATION ANALYSIS OF A DIESEL ENGINE FUELLED WITH SUNFLOWER AND CANOLA BIODIESELS

Erinç Uludamar^a, Gökhan Tüccar^b, Kadir Aydın^a, Mustafa Özcanlı^c

a Department of Mechanical Engineering, Çukurova University, Adana, Turkey
b Department of Mechanical Engineering, Adana Science and Technology University, Adana, Turkey
c Department of Automotive Engineering, Çukurova University, Adana, Turkey

Contents

Introduction

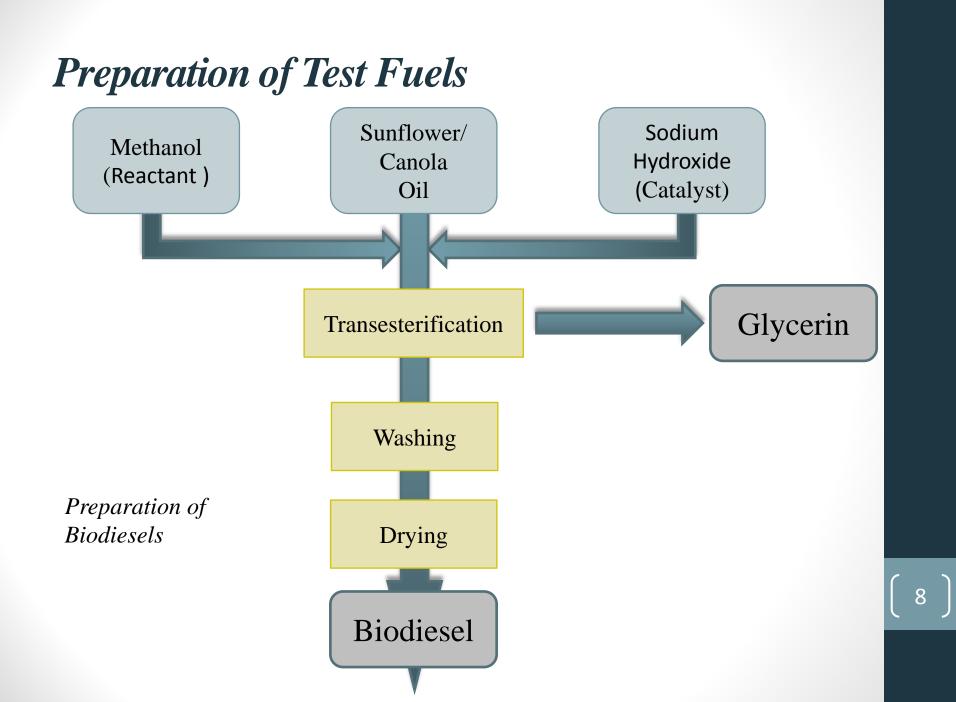
Advantages of Biodiesel

Renewable, Non-toxic, Biodegradable

Lower exhaust emissions

Can be used with little or no engine modifications

Purpose of the Study


- Biodiesel is one of the most popular alternative fuel. The usage of biodiesel is increasing day by day. Therefore, all effects of biodiesel on internal combustion engines must be known.
- In this study, vibration effect of canola and sunflower biodiesels at different engine speed was investigated in longitudinal, vertical and lateral axes.

Material and Method

• Experiments were conduced at 6 different engine speeds with 11 different fuels.

Preparation of Test Fuels

TEST FUELS			
Fuel Name	Ratio of Low Sulphur Diesel (% by volume)	Ratio of Biodiesel (% by volume)	Abbreviation
Low Sulphur Diesel	100	-	D
Sunflower Biodiesel	80	20	S20
	60	40	S40
	40	60	S 60
	20	80	S 80
	-	100	S100
Canola Biodiesel	80	20	C20
	60	40	C40
	40	60	C60
	20	80	C80
	-	100	C100

Determination of Test Fuel Properties

Fuel Properties of Test Fuels				
Test Fuels	Density	Cetane Number	Kinematic Viscosity	Gross Heating
	(kg/l)		at 40°C (mm ² /s)	Value (kcal/kg)
D	0,837	59,3	2,7	45857
S20	0,844	53,8	4,2	44246
S40	0,854	53,0	4,5	43430
S60	0,865	50,9	4,6	42472
S80	0,876	47,6	5,1	41388
S100	0,886	44,5	5,5	39149
C20	0,846	54,3	4,5	43413
C40	0,857	53,4	4,8	42986
C60	0,867	51,7	5	41756
C80	0,877	49	5,2	40129
C100	0,883	46	5,4	38363

Zeltex ZX 440 NIR petroleum analyzer: Cetane Number Tanaka AKV 202 auto kinematic viscosity test: Viscosity Kyoto electronics DA-130: Density Measurement IKA-Werke C2000 Bomb Calorimeter: Gross Heating Value

Experimental Set-up

Brand	Mitsubishi Canter
Model	4D31
Configuration	In line 4
Туре	Direct injection diesel with glow plug
Displacement	3298cc
Bore	100 mm
Stroke	105 mm
Power	91 HP @ 3500rpm
Torque	223 Nm @ 2200rpm
Oil Cooler	Water cooled

Technical Data of Measuring System

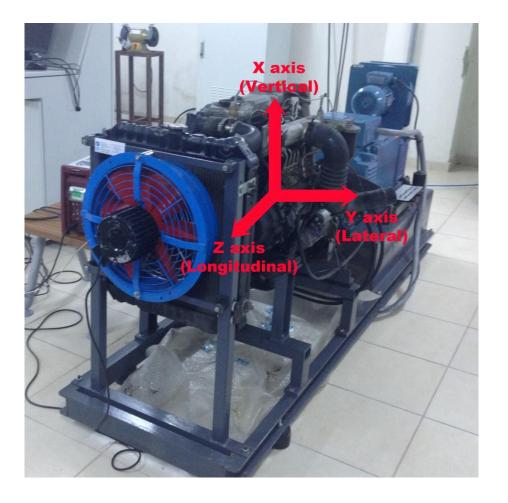
Brand	SINUS Messtechnik GmbH Soundbook_MK2
Resolution	24 Bit
Number of Channels	4 Measuring Channels (LEMO)
Accuracy	EN 60651 and EN 60804 class 1, IEC 61672-1 class 1, group Z, percentages according to DIN 45657
Sampling rates	51.2 kHz
Transducer Supply	Polarization voltage 20 V, 63 V or 200 V and ICP (2mA, 4mA)
	Fast =0.125 s
Time Weighting	Slow =1 s
Time wergnung	Impulse =0.035 s
	$Peak = 20 \mu s$

Technical Specifications of				
Accelerometer (PCB-356A33)				
Brand	PCB-356A33			
Performance				
Sensitivity (±10 %)	1.02 mV/(m/s ²)			
Measurement Range	$\pm 4905 \text{ m/s}^2 \text{ pk}$			
Frequency Range (±5 %)	2 to 10000 Hz			
Frequency Range (±5 %)	2 to 7000 Hz			
Resonant Frequency	≥55 kHz			
Broadband Resolution (1 to 10000 Hz)	0.04 m/s ² rms			
Non-Linearity	≤1 %			
Transverse Sensitivity	≤5 %			
Environmental				
Overload Limit (Shock)	$\pm 98100 \text{ m/s}^2 \text{ pk}$			
Temperature Range	-54 to +121 °C			
Physical				
Sensing Element	Ceramic			
Sensing Geometry	Shear			
Housing Material	Titanium			

Calculation of RMS value

•
$$a_w = \sqrt{\frac{1}{T} \int_0^T a_w^2(t) dt}$$

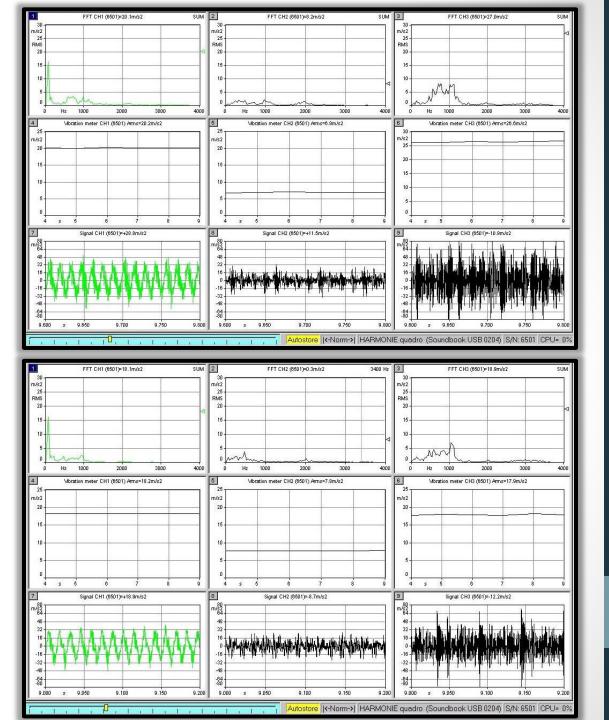
 a_w : weighted acceleration (m/s²)
T: measurement time


▲

▲

•
$$a_{total} = \sqrt{a_{vertical}^2 + a_{lateral}^2 + a_{longitudinal}^2}$$

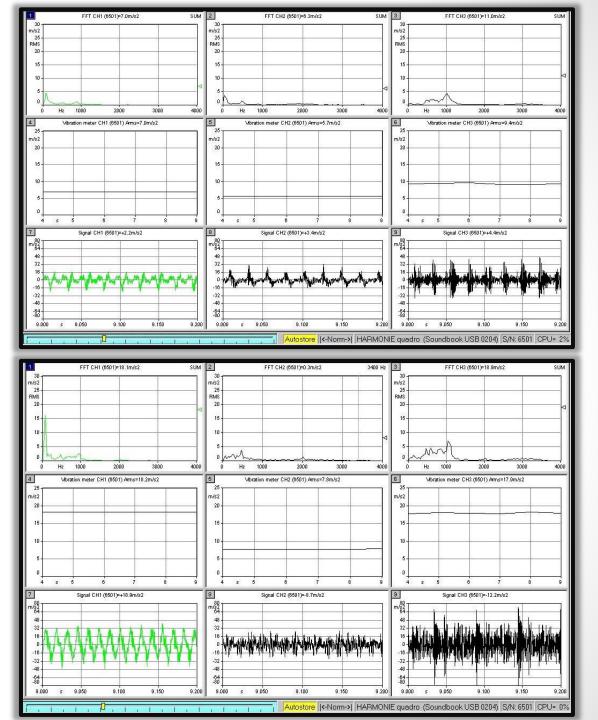
 $a_{total:}$ combined acceleration of three axes

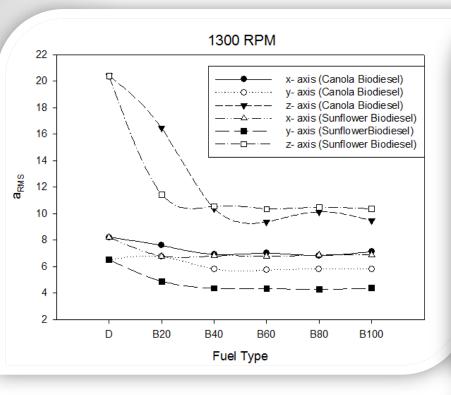

Axes of the Test Engine

Comparison of Different Fuels

D@2200 rpm

C60@2200 rpm

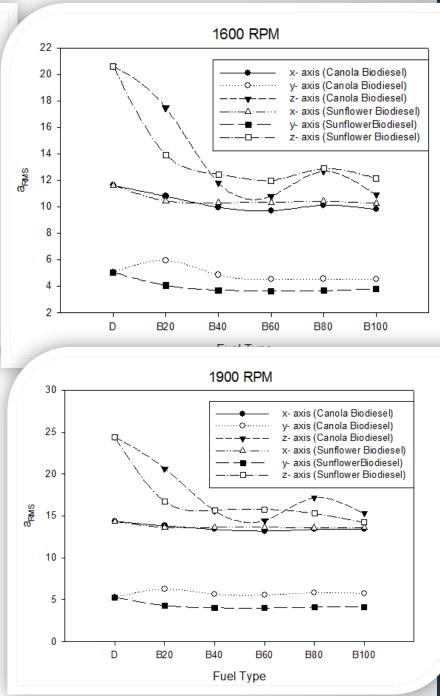


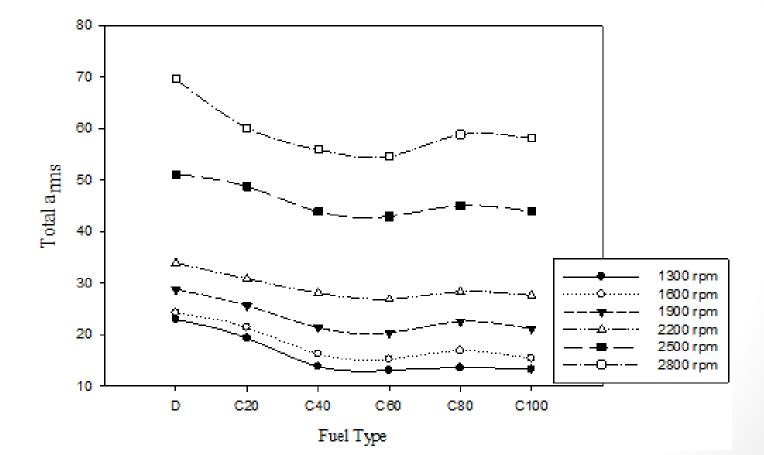

. 15

Comparison at Different Engine Speeds

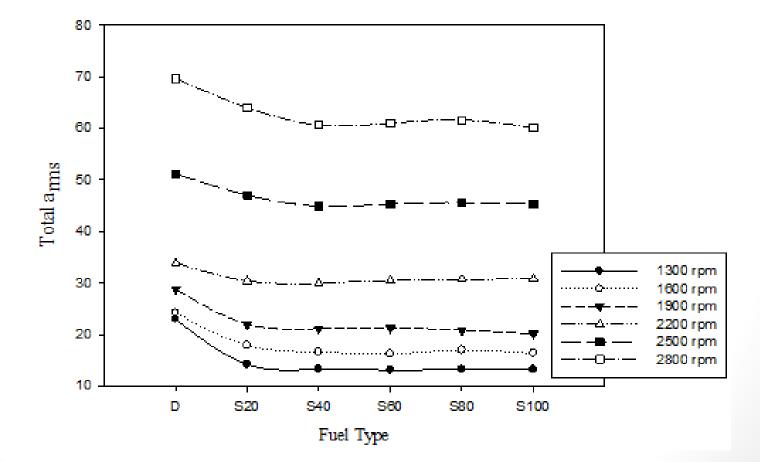
C60@1300 rpm

C60@2200 rpm




B20 : 20% biodiesel ratio into D (by volume)
B40 : 40% biodiesel ratio into D (by volume)
B60 : 60% biodiesel ratio into D (by volume)
B80 : 80% biodiesel ratio into D (by volume)
B100: Biodiesel

Comparison of different fuels at x- y- z axes



Total a_{rms} Values of Canola Biodiesel

Total a_{rms} Values of Sunflower Biodiesel

CONCLUSIONS

- Vibration amplitude increased with engine speed.
- Canola and sunflower biodiesel addition into the low sulphur diesel fuel decreased the vibration acceleration of the diesel engine. Sunflower biodiesel was improved the vibration amplitude more than canola biodiesel.
- Up to 40% biodiesel blend of canola and sunflower biodiesels with low sulphur diesel fuel, vibration values significantly improved, and the least value observed with 60% biodiesel blend for most of the test fuel.
- The results also showed that, even though total a_{rms} of all frequencies were highest at longitude axis, at all engine speeds; the maximum vibration amplitude occurred in vertical axis due to upward and downward piston movement.

Acknowledgements

The authors would like to thank to SINUS Messtechnik GmbH for their technical support.

Thank you for your attention!

Erinç ULUDAMAR

Research Assistant Çukurova University Department of Mechanical Engineering Automotive Division

