Modeling the drying and sorption behaviour of yam (*Dioscoreaceae rotundata*)

E.A. Amankwah, K.A. Dzisi, G. van Straten, A.J.B. van Boxtel

3rd International Conference and Exhibition on Food Processing and Technology, Las Vegas, USA

Drying of yam

- Yam is an important food crop for many people in the yam zone of West Africa
- MC: about 70%
- Uses: when boiled, roasted or fried
- Losses: 10-50%
- Production: Ghana is a main producer (third to Nigeria)
- Export: Ghana is leading in West Africa

Yam as a food product

- Nutrition:
 - 4 times more protein as in cassava
 - the only root crop that exceeds rice in protein
 - overall rating of essential amino acids relatively high and superior to sweet potato
- Drying into powders may increase its variability of uses
 - In soups
 - composite products
 - baby foods

Drying properties

- Moisture fits: Classical empirical/black-box models are often used
 - High R-square values
- The challenge: To understand moisture transport
- Is a mass driven equation an option?

Sorption isotherms

Indicates equilibrium conditions of a food product under varying conditions of RH and temperature

- useful for optimization
- design of drying equipment
- predictions of quality parameters
- shelf-life study
- storage investigations.

How is it affected by temperature?

Dynamic Vapour Sorption analyser (DVS)

Sorption model

Sorption

• Henderson, Halsey, Oswin and GAB equations

• The GAB equation is

 $X_{e} = C_{1}C_{2}C_{3}RH[(1 - C_{2}RH)(1 - C_{2}RH + C_{2}C_{3}RH)]^{-1}$

wame Nkrumah University

Drying rate measurements

Yam variety and cultivar: D. rotundata, Dente

- Cut size: 3x3x1 cm
- Drying procedure/ equipment

Drying model

Diffusion

$$\frac{dX}{dt} = D \frac{d^2 X}{dx^2}$$

Approximated by

$$MR = \frac{X - X_e}{X_0 - X_e} = \frac{8}{\pi^2} \exp\left(-\frac{\pi^2}{L^2} Dt\right)$$

Specifying the drying rate as

$$drying \ rate = \frac{dX}{dt} = -k(X - Xe)$$

Gives

$$\frac{X - X_e}{X_0 - X_e} = \exp(-kt)$$
$$k \approx \frac{\pi^2}{L^2} D$$

Then

KUMASI

Kwame Nkrumah University of Science and Technology.

Results on sorption isotherms

Sorption curve model

At 50°C	C ₁	C ₂	C ₃	K	n	MSe
GAB	8.28	0.76	10.14	-	-	0.0027
Henderson	-	-	-	0.012	1.65	0.09

Kwame Nkrumah University of Science and Technology.

Drying model

Using

- R-square values ≈ 0.995 are good...
- ... but systematic errors

Drying rate Vs moisture

Drying rate Vs moisture

Cont. drying rate

- Rate, k is not constant
- This behaviour could not be detected by the empirical models
- Region of phase transition is well defined
- Probably may be the glass transition region coupled with shrinkage
- There is progressive increase in temp with decreased moisture content

Conclusion

The present work reveals that:

- Both drying rate and diffusion approximation models exhibit two drying phases with a shift between 1.2-1.3 kg water/kg dry matter.
- This can be explained from shrinkage behavior of yam during drying
- There was no shift in EMC at different temperatures as reported in literature.
- The GAB model fitted well the sorption isotherms

Thanks for your attention

This work is sponsored by Wageningen University Research Center (WUR), The Netherlands and in colaboration with Kwame Nkrumah University of Science and Technology (KNUST), Ghana

