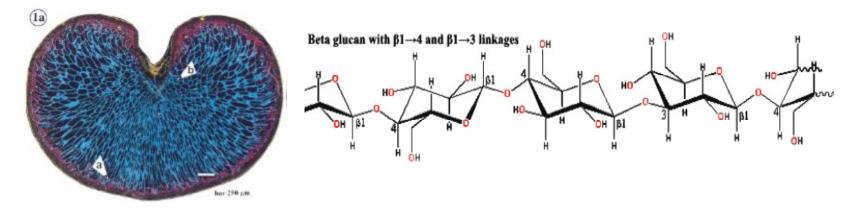


# BARLEY-BASED FUNCTIONAL FOODS IN HEALTH AND NUTRITION


Elsayed Abdel-Aal Guelph Food Research Centre Guelph, Ontario, Canada Nutritional & Food Sciences 2014

## Outline

- Barley Functional Food
  - Barley characteristics
  - Barley health claim
  - Barley food status
- Health Benefits of Barley
  - Glycaemia
  - Satiety

## **BARLEY CHARACTERISTICS**

- **\checkmark** Rich source of β-glucan
- ✓ Low GI
- ✓ Rich source of antioxidants
- ✓ Long history of food use
- ✓ 5<sup>th</sup> major crop worldwide
- $\checkmark\,$  Now available in assorted forms and compositions



#### **Barley Composition**<sup>a</sup>

| Component        | %, dry weight                   |
|------------------|---------------------------------|
| Starch           | 60-64                           |
| Amylose          | 2.9-30.9 <sup>b</sup>           |
| β-Glucans        | 3.6-6.1 (4.3-11.2) <sup>b</sup> |
| Arabinoxylans    | 4.4-7.8                         |
| Cellulose        | 1.4-5.0                         |
| Sugars           | 0.4-2.9                         |
| Oligosaccharides | 0.2-1.8                         |
| Proteins         | 8-15                            |
| Lipids           | 2-3                             |
| Minerals         | 2.3                             |
| Vitamins         | B-complex, E, etc.              |

<sup>a</sup>MacGregor 1993. <sup>b</sup>Gray et al. 2009, Cereal Chem., 86, 669.

#### **Dietary Fiber in Cereals**

| Cereal          | %, dry weight |  |  |
|-----------------|---------------|--|--|
| Rye             | 15.1          |  |  |
| Triticale       | 14.6          |  |  |
| Wheat           | 12.2          |  |  |
| Dehulled oats   | 10.6          |  |  |
| Dehulled barley | 10.1          |  |  |
| Canary seed     | 8.7           |  |  |
| Millet          | 8.5           |  |  |
| Corn            | 7.3           |  |  |
| White sorghum   | 6.3           |  |  |
| Brown rice      | 4.6           |  |  |

**USDA 2010** 

## **BARLEY HEALTH CLAIM**

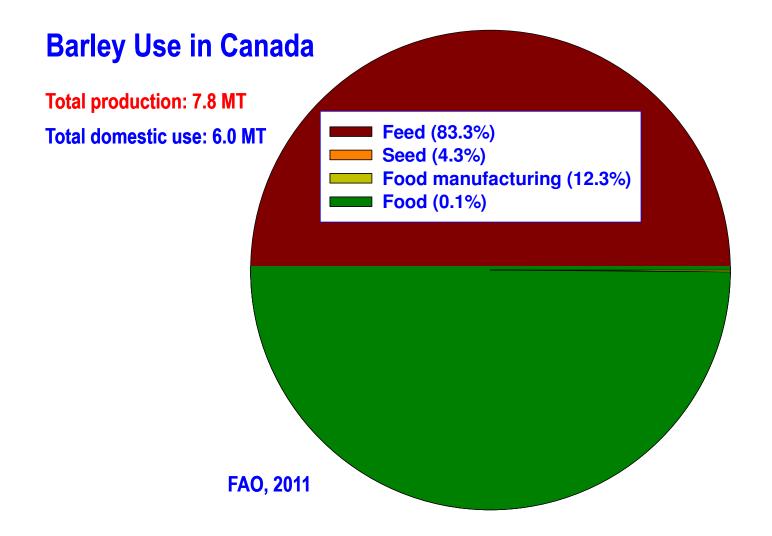
#### **Canada Health Claim**

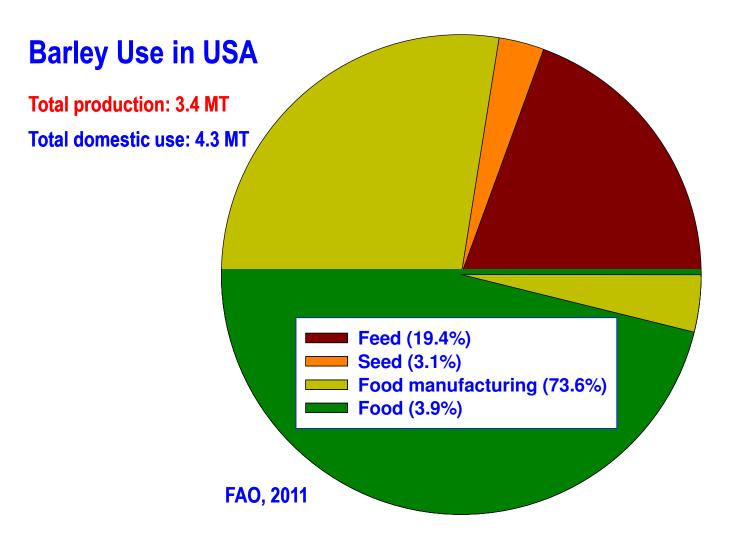
### Linking barley grain products to a reduction of blood cholesterol

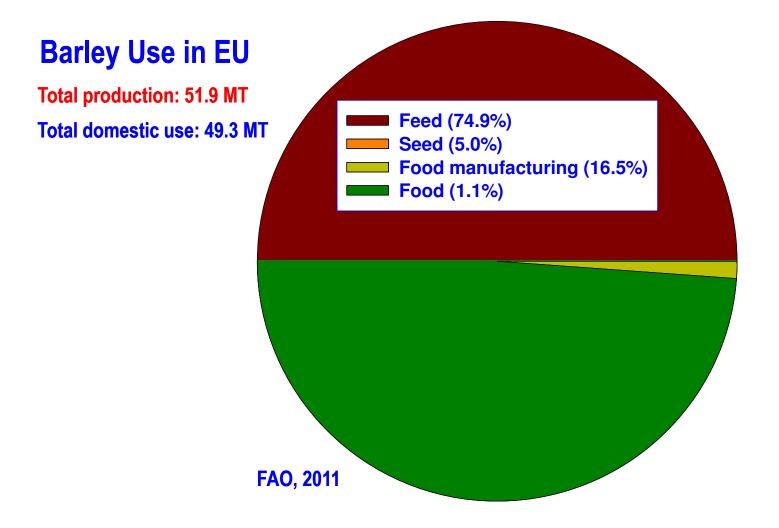
The claim is relevant and generally applicable to the Canadian population given that a high proportion of the population (approximately 40% of Canadian adults aged 20 to 79) has unhealthy total cholesterol levels (>5.2 mmol/L), putting them at an increased risk for heart disease.

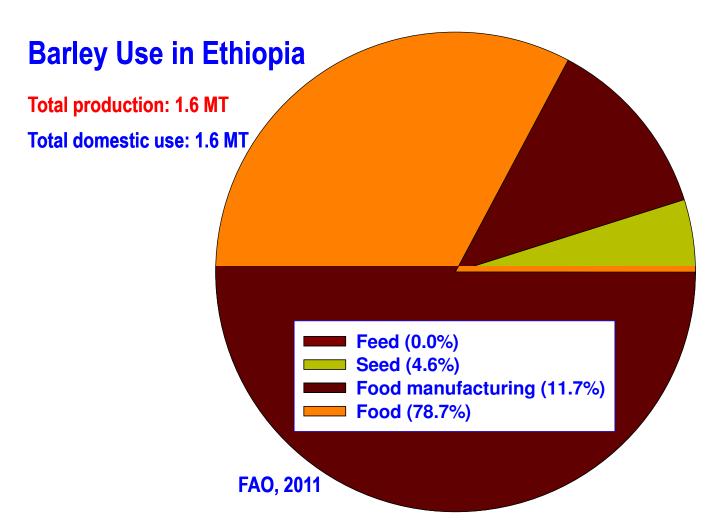
### **USA - FDA Health Claim**

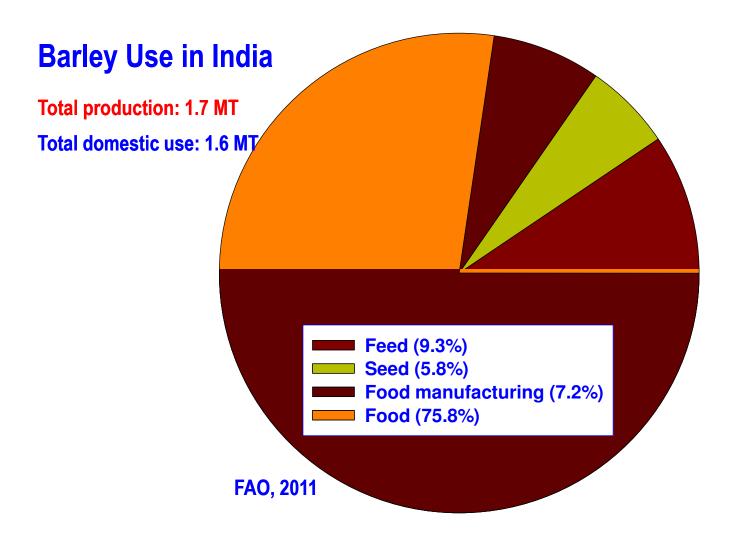
- Associating Consumption of Barley Products with Reduction of Risk of Coronary Heart Disease
- The claim allows foods containing barley to claim that they reduce the risk of coronary heart disease (whole grain barley and dry milled barley products such as flakes, grits, flour, and pearled barley, which provide at least 0.75 grams of soluble fiber per serving)

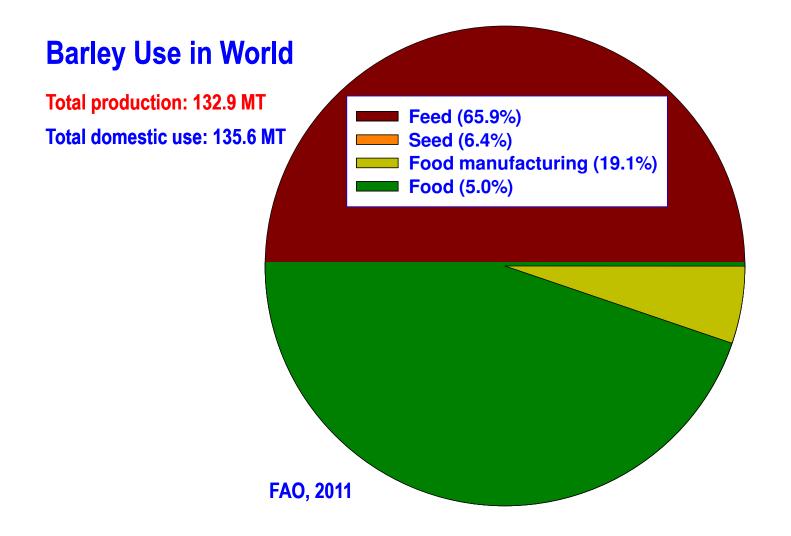

### **European Food Safety Authority (EFSA)**


- Linking barley beta-glucans with lowering blood cholesterol, which may reduce the risk of (coronary) heart disease
- The target population proposed by the applicant is adults with normal or mildly elevated blood cholesterol concentrations


## **STATUS OF BARLEY FOOD**














### **Constraints to Barley Food Development**

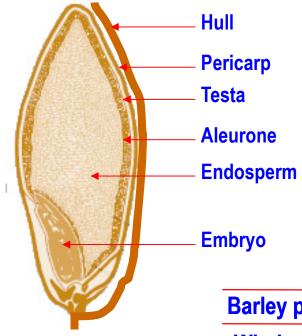
- Lack of international policies to encourage barley use for human food
- > Lack of quality parameters
- > Shortage of improved varieties for food barley
- Lack of quality research on food barley

### EFFECTS OF BARLEY ON GLYCAEMIA AND SATIETY

## **CLINICAL STUDIES**

1<sup>st</sup> study

- Effect of pearling on glycemic response and Gl,
- 3 barley foods, 2 barley fractions (wholegrain, white pearl)
- 10 healthy participants, BMI 27.6


2<sup>nd</sup> study:

- Effect of barley cultivar and composition,
- 7 wholegrain foods, 1 commercial, pot and pearl food
- 10 healthy participants, BMI 26.4

3<sup>rd</sup> study

- Effect of pasta processing,
- 2 barley pastas, semolina pasta as control
- 10 healthy participants, BMI 28.3

### **BARLEY PEARLING**





Pearling process: Sequential removal of kernel outer layers and germ

| <b>Barley product</b> | Time (min) | % Removal |
|-----------------------|------------|-----------|
| Whole grain           | 0.9-1.0    | 11-12     |
| Commercial            | 2.0-2.3    | 17-18     |
| Pot                   | 3.0-3.3    | 22-24     |
| White pearl           | 4.5-5.8    | 31-34     |

## **CLINICAL STUDIES**

1<sup>st</sup> study

- Effect of pearling on glycemic response and Gl,
- 3 barley foods, 2 barley fractions (wholegrain, white pearl)
- 10 healthy participants, BMI 27.6

2<sup>nd</sup> study:

- Effect of barley cultivar and composition,
- 7 wholegrain foods, 1 commercial, pot and pearl food
- 10 healthy participants, BMI 26.4

3<sup>rd</sup> study

- Effect of pasta processing,
- 2 barley pastas, semolina pasta as control
- 10 healthy participants, BMI 28.3

### **Barley Cultivars**

| Cultivar     | Туре                   |
|--------------|------------------------|
| AC Parkhill  | 2 row, hulled, normal  |
| Chief        | 2 row, hulled, normal  |
| GB992027     | 2 row, hulled, normal  |
| AC Klink     | 6 row, hulled, normal  |
| Celebrity    | 6 row, hulled, normal  |
| OAC Kawartha | 6 row, hulled, normal  |
| AC Alberta   | 2 row, hulless, normal |
| CDC Fibar    | 2 row, hulless, waxy   |
| CDC Rattan   | 2 row, hulless, waxy   |

### **Composition of Barley Foods**

| Component               | %, dry weight |
|-------------------------|---------------|
| Starch                  | 52.4-66.6     |
| Amylose                 | 2.9-30.9      |
| β-Glucan                | 4.3-11.2      |
| Soluble dietary fiber   | 2.2-7.9       |
| Insoluble dietary fiber | 7.4-17.7      |

## **CLINICAL STUDIES**

1<sup>st</sup> study

- Effect of pearling on glycemic response and Gl,
- 3 barley foods, 2 barley fractions (wholegrain, white pearl)
- 10 healthy participants, BMI 27.6

2<sup>nd</sup> study:

- Effect of barley cultivar and composition,
- 7 wholegrain foods, 1 commercial, pot and pearl food
- 10 healthy participants, BMI 26.4

3<sup>rd</sup> study

- Effect of pasta processing,
- 2 barley pastas, semolina pasta as control
- 10 healthy participants, BMI 28.3

#### **Barley Food Forms**



Food cooking/processing Food form Starch characteristics Fiber content β-glucan content



Glycemic response Glycemic index Satiety index Viscosity β-glucan MW β-glucan Solubility

## **BARLEY GLYCAEMIA**

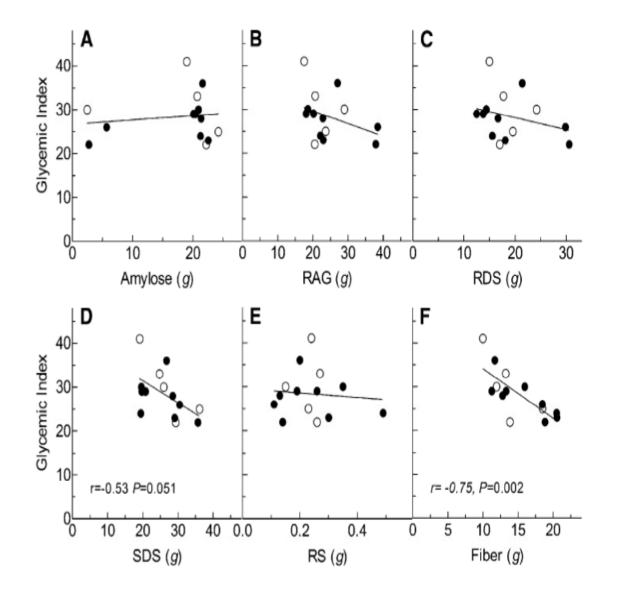
**TABLE 1** The iAUC and GI of 3 barley cultivars processed (pearled) in 2 different ways: Expt. 1<sup>1</sup>

|                     | iAUC        |                 |                    | GI         |              |                   |
|---------------------|-------------|-----------------|--------------------|------------|--------------|-------------------|
|                     | Fra         | Fraction        |                    | Fraction   |              |                   |
| Barley cultivar     | WG          | WP              | Mean               | WG         | WP           | Mean              |
| $mmol \times min/L$ |             |                 |                    |            |              |                   |
| Celebrity           | $71 \pm 20$ | 88 ± 14         | $79\pm16^{ m a,b}$ | $25\pm4$   | $33 \pm 3$   | $29 \pm 3^{a,b}$  |
| AC Parkhill         | $85 \pm 21$ | $109 \pm 19$    | $97~\pm~19^{a}$    | $30\pm5$   | $41 \pm 5$   | $35 \pm 4^{a}$    |
| CDC Fibar           | $61 \pm 16$ | 78 ± 11         | $69~\pm~13^{ m b}$ | $22 \pm 4$ | $30\pm3$     | $26~\pm~3^{ m b}$ |
| Mean of cultivars   | $72 \pm 18$ | $91 \pm 14^{*}$ |                    | $26 \pm 4$ | $35 \pm 3^*$ |                   |
| White bread         |             |                 | $189 \pm 22^{\$}$  |            |              | 71 <sup>§</sup>   |

<sup>1</sup> Values are means  $\pm$  SEM for n = 10 participants. There was a significant main effect of cultivar. Means without a common superscript letter differ, P < 0.05. \*Significant main effect of pearling level, P < 0.05. <sup>§</sup>White bread differed from all barley test meals, P < 0.05. There was no significant cultivar  $\times$  pearling interaction for iAUC or GI. GI, glycemic index; iAUC, incremental AUC; WG, whole-grain; WP, white pearled.

| Barley cultivar <sup>2</sup> | iAUC                | GI                      |  |
|------------------------------|---------------------|-------------------------|--|
|                              | mmol $\times$ min/L |                         |  |
| Celebrity                    | $48 \pm 9^{b}$      | $21 \pm 4^{b}$          |  |
| Chief                        | $65~\pm~11^{ m b}$  | $29 \pm 4^{\text{b}}$   |  |
| Rattan                       | $58 \pm 12^{b}$     | $26 \pm 6^{b}$          |  |
| AC Klinck                    | $71 \pm 12^{b}$     | $36~\pm~8^{ m b}$       |  |
| Kawartha                     | $61~\pm~10^{ m b}$  | $28 \pm 4^{\text{b}}$   |  |
| AC Alberta                   | $63~\pm~13^{ m b}$  | $29 \pm 7^{\mathrm{b}}$ |  |
| GB                           | $52 \pm 10^{b}$     | $24~\pm~5^{ m b}$       |  |
| White bread                  | $163 \pm 15^{a}$    | 71 <sup>a</sup>         |  |

**TABLE 2** The iAUC and GI of 7 barley cultivars: Expt. 2<sup>1</sup>


<sup>1</sup> Values are means  $\pm$  SEM for n = 10 participants. Means without a common superscript letter differ, P < 0.05. GI, glycemic index; iAUC, incremental AUC.

<sup>2</sup> Cultivars were processed to remove the husk only (whole-grain).

**TABLE 3** The iAUC and GI of 2 fractions of pearled barley pasta and semolina pasta: Expt. 3<sup>1</sup>

|                     | iAUC       |                  |              | GI        |              |            |
|---------------------|------------|------------------|--------------|-----------|--------------|------------|
|                     | Fra        | Fraction         |              | Fraction  |              |            |
| Barley cultivar     | WG         | WP               | Mean         | WG        | WP           | Mean       |
| $mmol \times min/L$ |            |                  |              |           |              |            |
| Celebrity pasta     | 137 ± 17   | $115 \pm 17$     | $126~\pm~14$ | $71\pm 6$ | 58 ± 4       | $64 \pm 4$ |
| AC Parkhill pasta   | 141 ± 17   | 127 ± 12         | 133 ± 13     | 73 ± 7    | 64 ± 4       | $69 \pm 3$ |
| Mean of cultivars   | $139\pm14$ | $121 \pm 13^{*}$ |              | 72 ± 4    | $61 \pm 3^*$ |            |
| Semolina pasta      |            |                  | $151~\pm~20$ |           |              | $78 \pm 8$ |
| White bread         |            | —                | $142\pm16$   | —         |              | 71         |

<sup>1</sup> Values are means  $\pm$  SEM, n = 10 participants. Pasta was made from 2 barley cultivars pearled in 2 different ways with semolina pasta as a control. \*Significant main effect of pearling level, P < 0.05. There was no significant main effect of cultivar and no significant cultivar  $\times$  pearling interaction for iAUC or GI. GI, glycemic index; iAUC, incremental AUC; WG, whole-grain; WP, white pearled.



**FIGURE 1** Correlations between the GI and amounts of amylose (*A*), RAG (*B*), RDS (*C*), SDS (*D*), RS (*E*), and total fiber (*P*) in whole-grain and pearled barley consumed by n = 6 (Expt. 1) or n = 2 (Expt. 2) healthy participants. *Filled circles*, whole-grain barley; *open circles*, pearled barley. GI, glycemic index; RAG, rapidly available glucose; RDS, rapidly digested starch; RS, resistant starch; SDS, slowly digested starch.

### **Conclusions for Glycaemia**

- Cultivars exhibited significant differences in GR (30%) and GI (10 units)
- > Pearling significantly increased GR (20%) and GI (10 units)
- Milling and extruding the barley grains into wet pasta increased GI (186%)
- Starch digestion fractions did not appear to have a significant impact on the GI, only total dietary fiber appears to have an impact on GI

## **BARLEY SATIETY**

| Barley Cultivar | Satiety iAUC mm           | Satiety Index score      | iAUC Blood          | GI                  |
|-----------------|---------------------------|--------------------------|---------------------|---------------------|
|                 |                           | (SI)                     | Glucose             |                     |
|                 |                           |                          | (mmol×min/L)        |                     |
| Celebrity WG*   | 6105 ± 1074 <sup>ac</sup> | 133 ± 19.8 <sup>ac</sup> | 48±9 <sup>a</sup>   | 21 ± 4 <sup>a</sup> |
| Celebrity CP*   | $6234 \pm 640^{ac}$       | $153 \pm 37.5^{ac}$      | 55±6 <sup>ª</sup>   | $25 \pm 3^{a}$      |
| Celebrity PP*   | $6342 \pm 865^{ac}$       | $135 \pm 18.3^{ac}$      | 47±5 <sup>a</sup>   | $22 \pm 3^{a}$      |
| Celebrity WP*   | $6078 \pm 1074^{ac}$      | $134 \pm 23.5^{ac}$      | 68±11 <sup>ª</sup>  | $32 \pm 6^{a}$      |
| Alberta         | $5768 \pm 805^{ac}$       | $120 \pm 19.8^{ac}$      | 63±13 <sup>ª</sup>  | $29 \pm 4^{a}$      |
| Chief           | $7004 \pm 1054^{ac}$      | $165 \pm 35.3^{ac}$      | 65±11 <sup>ª</sup>  | $26 \pm 6^{a}$      |
| CDC Rattan      | $6812 \pm 1161^{ab}$      | 133 ± 19.3 <sup>ab</sup> | 58±12 <sup>a</sup>  | $36 \pm 8^{a}$      |
| AC Klinck       | $6075 \pm 1183^{ac}$      | $133 \pm 24.3^{ac}$      | 71±12 <sup>a</sup>  | $28 \pm 4^{a}$      |
| Kawartha        | 7518 ± 563 <sup>ab</sup>  | $175 \pm 27.9^{ab}$      | 61±10 <sup>a</sup>  | 29 ± 7 <sup>a</sup> |
| GB              | $6445 \pm 653^{ac}$       | $137 \pm 6.7^{ac}$       | 52±10 <sup>a</sup>  | $24 \pm 5^{a}$      |
| White bread     | 4774 ± 478 <sup>c</sup>   | 100 <sup>c</sup>         | 163±15 <sup>b</sup> | 71 <sup>b</sup>     |

Table 2. Incremental areas under the satiety curve (iAUC) and satiety Index (SI) of cooked barley cultivars and white bread, Expt. 1<sup>1</sup>

<sup>1</sup> Values are means  $\pm$  SEM for *n* =10. Means with different superscript letters differ significantly (Repeated measures of analysis, post hoc Tukey test, *P* < 0.05.) \* Celebrity Cultivar has been pearled into 4 levels of pearling; WG: Whole grain, CP: Commercial pearl, PP: Pot pearled, WP: White pearled.

Table 3. Incremental areas under the satiety curve (iAUC), Satiety index (SI), iAUC of the glycemic response and the GI of two barley pastas and their fractions, semolina pasta and white bread, Expt.  $2^{1,\$}$ 

|                | Sa                    | itiety iAUC n | nm                     | Satie    | ty Index Sco | ore (SI)         |          | C Blood Glu<br>mmol×min/ |        |          |                   |      |
|----------------|-----------------------|---------------|------------------------|----------|--------------|------------------|----------|--------------------------|--------|----------|-------------------|------|
|                | Fraction <sup>€</sup> |               | Mean                   | Fraction |              | Mean             | Fraction |                          | Mean   | Fraction |                   | Mean |
|                | WG                    | WP            |                        | WG       | WP           |                  | WG       | WP                       |        | WG       | WP                |      |
| Celebrity      | 7118±835              | 7365±945      | 7241±890 <sup>ac</sup> | 140±20.9 | 151±27.0     | 145±23.5°        | 137±17   | 115±17                   | 126±14 | 71±6     | 58±4              | 64±4 |
| AC-Parkhill    | 6574±1166             | 6239±898      | 6406±103 <sup>ab</sup> | 121±13.4 | 118±12.7     | 119±13.1ª        | 141±17   | 127±12                   | 133±13 | 73±7     | 64±4              | 69±3 |
| Mean           | 6846±1000             | 6802±921      |                        | 130±17.5 | 134±19.8     |                  | 139±14   | 121±13 <sup>*</sup>      |        | 72±4     | 61±3 <sup>*</sup> |      |
| Semolina       |                       |               | 8379±706 <sup>c</sup>  |          |              | 178±26.7ª        |          |                          | 151±20 |          |                   | 78±8 |
| White<br>Bread |                       |               | 5011± 875 <sup>b</sup> |          |              | 100 <sup>a</sup> |          |                          | 142±16 |          |                   | 71   |

<sup>1</sup>Values are means  $\pm$  SEM for n = 10.

<sup>abc</sup> Means with different superscript letters differ significantly (Repeated measures of analysis, post hoc

Tukey test, *P* < 0.05.)

<sup>€</sup>WG: wholegrain; WP: white pearled.

<sup>§</sup> Pasta made from 2 barley cultivars pearled in 2 different ways and semolina pasta as a control

<sup>\*</sup> Significant main effect of pearling level, *P* < 0.05.

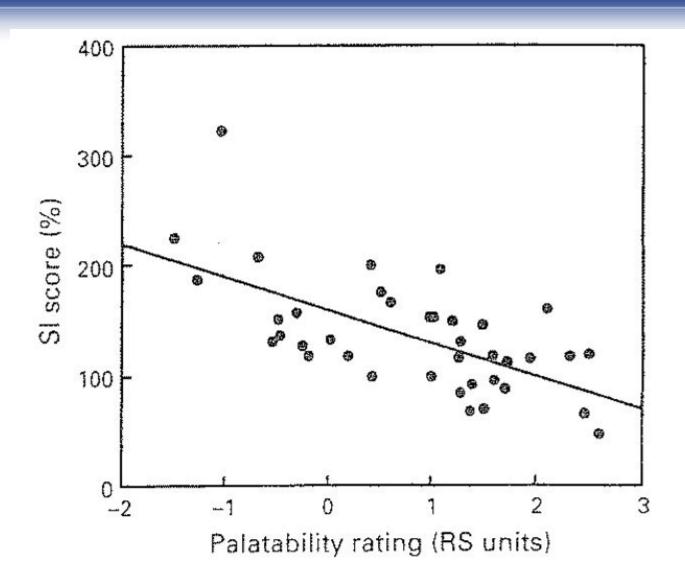



Figure 6 The relationship between the mean palatability ratings and SI scores of the test foods. r = -0.64, P < 0.001, n = 38.

#### **Conclusions for Satiety**

- Boiled barley grains appears to have a limited effect on subjective satiety
- > Pearling has no effect on satiety
- > Food form appears to have an effect on satiety

## PHYSICOCHEMICAL PROPERTIES OF BARLEY AND HEALTH EFFECTS

| Table 2. Physico-chemical Characteristics of Cooked Barley Kernels ef |
|-----------------------------------------------------------------------|
| n = 3                                                                 |

| Cultivar    | Fraction | Food Form     | β-glucan<br>content<br><i>(% db)<sup>*</sup></i> | MW of β-glucan<br>(g/mol×10 <sup>3</sup> ) <sup>§</sup> | % Soluble β-<br>glucan | Viscosity of β-<br>glucan slurry<br>(mPa∙sec) <sup>€</sup> | Viscosity of β-<br>glucan extract<br>(mPa∙sec) <sup>*</sup> | % Viscosity<br>of β-glucan |
|-------------|----------|---------------|--------------------------------------------------|---------------------------------------------------------|------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------------------------|
| Celebrity   | WG       | Boiled Kernel | $5.9 \pm 0.14^{\circ}$                           | 2310 ± 600                                              | $36.99 \pm 2.9^{a}$    | $2467 \pm 46^{ab}$                                         | $1460.33 \pm 30^{ab}$                                       | 59%                        |
| Celebrity   | WP       | Boiled Kernel | 6.1 ± 0.13 <sup>ª</sup>                          | 1870 ± 200                                              | $40.33 \pm 0.5^{a}$    | $2331 \pm 184^{ab}$                                        | $393.00 \pm 14^{ab}$                                        | 17%                        |
| AC-Parkhill | WG       | Boiled Kernel | $4.2 \pm 0.04^{a}$                               | 1460± 320                                               | $47.00 \pm 0.7^{a}$    | 826 ± 83 <sup>a</sup>                                      | 55.10 ± 2.0 <sup>ª</sup>                                    | 7%                         |
| AC-Parkhill | WP       | Boiled Kernel | $4.4 \pm 0.13^{a}$                               | $1640 \pm 656$                                          | $42.88 \pm 0.7^{a}$    | 2954 ± 410 <sup>ª</sup>                                    | 1662.67 ± 43ª                                               | 56%                        |
| CDC Fibar   | WG       | Boiled Kernel | $9.5 \pm 1.6^{b}$                                | 2290 ± 105                                              | $78.21 \pm 1.8^{b}$    | 1960 ± 92 <sup>b</sup>                                     | 882.00 ± 105 <sup>b</sup>                                   | 45%                        |
| CDC Fibar   | WP       | Boiled Kernel | $11.1\pm0.4^{b}$                                 | 1960 ± 140                                              | $81.01 \pm 0.8^{b}$    | 3906 ± 102 <sup>b</sup>                                    | 1748.67 ± 239 <sup>b</sup>                                  | 45%                        |

<sup>f</sup> Significant main effect of cultivar, P < 0.05, means with different superscripts are significantly

different. There was no significant main effect of pearling.

<sup>\*</sup>WG: Whole grain, WP: White Pearled

 $^{e}$  Mean  $\pm$  SD

\* Percent dry basis

<sup>§</sup> MW = Molecular weight

 $^{\varepsilon}$  Viscosity as measured by Rapid Visco Analyzer (RVA)

\* Measured by flow-injection analysis (FIA)

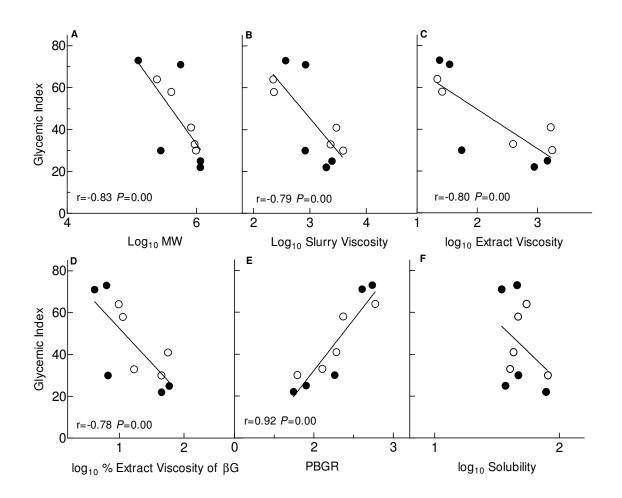
|             | 14010 0.1             | injoice eller | inear enaraet                          |                                                             | oned Burley              | Lustu                                                        |                                                 |                                       |
|-------------|-----------------------|---------------|----------------------------------------|-------------------------------------------------------------|--------------------------|--------------------------------------------------------------|-------------------------------------------------|---------------------------------------|
| Cultivar    | Fraction <sup>®</sup> | Food Form     | β-glucan<br>content<br><i>(% db)</i> * | MW of β-<br>glucan<br>(g/mol×10 <sup>3</sup> ) <sup>§</sup> | % Soluble β-<br>glucan   | Viscosity of<br>β-glucan<br>slurry<br>(mPa∙sec) <sup>€</sup> | Viscosity of β-<br>glucan extract<br>(mPa∙sec)* | % Extract<br>Viscosity of<br>β-glucan |
| Celebrity   | WG                    | Pasta         | $6.1 \pm 0.2^{a}$                      | 1130 ± 331 <sup>ab</sup>                                    | $34.47 \pm 0.1^{a}$      | $840 \pm 80^{ab}$                                            | $34.70 \pm 5.0^{a}$                             | 4%                                    |
| Celebrity   | WP                    | Pasta         | 6.2 ± 0.5°                             | 810 ± 865 <sup>ab</sup>                                     | 46.77 ± 0.6 <sup>a</sup> | 230 ± 18 <sup>ab</sup>                                       | $26.13 \pm 4.0^{\circ}$                         | 11%                                   |
| AC-Parkhill | WG                    | Pasta         | $4.0 \pm 0.01^{a}$                     | 250 ± 280 <sup>ª</sup>                                      | $45.86 \pm 0.9^{ab}$     | 372 ± 45 <sup>°</sup>                                        | 23.63 ± 3.0 <sup>ª</sup>                        | 6%                                    |
| AC-Parkhill | WP                    | Pasta         | $4.2 \pm 0.2^{a}$                      | 490 ± 101ª                                                  | $54.60 \pm 0.5^{ab}$     | 223 ± 35°                                                    | $21.73 \pm 1.0^{a}$                             | 10%                                   |
| CDC Fibar   | WG                    | Pasta         | $11.30 \pm 0.89^{b}$                   | 1240 ± 131 <sup>b</sup>                                     | 58.74 ± 0.3 <sup>b</sup> | 947 ± 19 <sup>b</sup>                                        | 476.3 ±3 14 <sup>b</sup>                        | 50%                                   |
| CDC Fibar   | WP                    | Pasta         | 11.07 ± 0.5 <sup>b</sup>               | 1100 ± 250 <sup>b</sup>                                     | $63.50 \pm 0.9^{b}$      | 470 ± 198 <sup>b</sup>                                       | 114.00 ±5.0 <sup>b</sup>                        | 24%                                   |

| Table 3. Physico-chemical Characteristics of Cooked Barley Past |
|-----------------------------------------------------------------|
|-----------------------------------------------------------------|

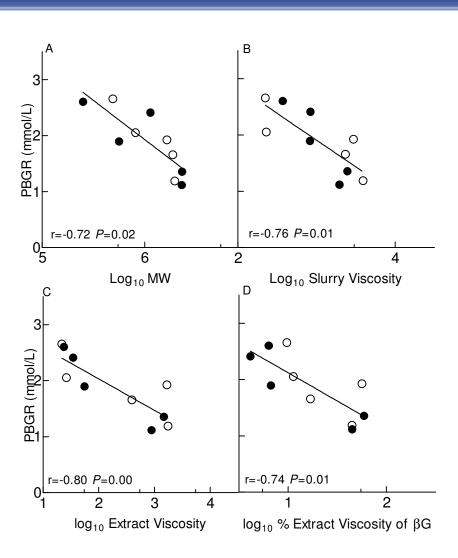
n = 3

<sup>f</sup> Significant main effect of cultivar, P < 0.05, means with different superscripts are significantly different. There was no significant main effect of pearling.

<sup>°</sup>WG: Whole grain, WP: White Pearled


<sup>e</sup> Mean ± SD

\* Percent dry basis


<sup>§</sup> MW = Molecular weight

 $^{\epsilon}$  Viscosity as measured by Rapid Visco Analyze

\* Measured by flow-injection analysis (FIA)



**Figure 1.** Correlation between the glycemic index (GI) and  $\log_{10}$  MW (A),  $\log_{10}$  Viscosity (B),  $\log_{10}$  Extract Viscosity (C),  $\log_{10} \% \beta$ -glucan contribution (D), Peak blood glucose rise (PBGR) (E) and  $\log_{10}$  solubility (F) for barley products. Values are means  $\pm$  SD, n = 10. Viscosity = slurry viscosity of starch and  $\beta$ -glucan; Extract viscosity = only  $\beta$ -glucan viscosity. *Filled circles*, whole-grain barley; *open circles*, pearled barley



**Figure 2.** Correlation between the Peak blood glucose rise (PBGR) and  $\log_{10}$  MW (A),  $\log_{10}$  Viscosity (B),  $\log_{10}$  Extract Viscosity (C) and  $\log_{10} \% \beta$ -glucan contribution (D), for barley products. Values are means  $\pm$  SD, n = 10. Viscosity = slurry viscosity of starch and  $\beta$ -glucan; Extract viscosity = only  $\beta$ -glucan viscosity. *Filled circles*, whole-grain barley; *open circles*, pearled barley

#### **Conclusions for Physicochemical Properties**

- Barley cultivars differed in their physicochemical properties (e.g. viscosity, MW, solubility, etc.)
- > Pearling had a little effect on physicochemical properties
- Food form significantly affected physicochemical properties and thus its glycemic response and glycemic index

#### **Take Home Messages**

- Barley holds potential as a functional food and source of dietary supplement (e.g. β-glucan)
- Barely is a low GI food that can be used in the management of diabetes and obesity
- Barley food form is crucial in delivering anticipated health effects of barley
- More global efforts are needed to promote barley as a healthy food

### ACKNOWLEDGEMENTS

**Collaborators** 

- Dr. Tom Wolever, U of T
- Dr. Thin-Meiw Choo, AAFC
- Dr. Brian Rossnagel, U of S
- Dr. Emanuele Marconi, Italy

**Partners & Grants** 

- Gilbertson & Page
- Cribit Seeds
- Grain process Enterprise
- OMAFRA
- OBCO
- AAFC

#### **Graduate students**

- Danielle Gray, U of G
- Ahmed Al-Dughpassi, U of T
- Rosanna DePaula, Molise univ. Italy

#### **Research technicians**

- Iwona Rabalski
- Marta Hernandez





# THANK YOU

# Questions

AAFC Vision: Driving innovation and ingenuity to build a world leading agricultural and food economy for the benefit of all Canadians

AAFC Mission: to provide leadership in the growth and development of a competitive, innovative and sustainable Canadian agriculture and agri-food sector