Renal dysfunction and metabolic syndrome: the chicken or the egg?

Elena Rampanelli

Academic Medical Center,
University of Amsterdam,
The Netherlands
Metabolic syndrome

- Hypertension
- Visceral Obesity
- Insulin Resistance
- High Triglycerides
- Low HDL-Cholesterol

Type 2 Diabetes
Hearth disease
Stroke
Fatty Liver Disease
Renal dysfunction
- Tubular atrophy
- Interstitial fibrosis
- Glomerulosclerosis
Metabolic syndrome & Renal dysfunction

- In 1974, first description of an association between Metabolic Syndrome & Nephrotic proteinuria.

- Serum lipid abnormalities (high TG, low HDL) are associated with significantly increased risk of CKD.

- Predict the development of renal dysfunction.

- Increasing BMI associates with increased risk of developing ESRD.

- Renal dysfunction appears long before hypertension/diabetes in Metabolic syndrome.

- Metabolic syndrome patients have 2.5-fold higher risk of developing CKD and 2-fold higher risk for microalbuminuria.

Prevalence of CKD

N° Metabolic Syndrome components

Nlrp3 is a key modulator of diet-induced nephropathy and renal cholesterol accumulation

Pieter J. Bakker^1, Loes M. Butter^1, Lotte Kors^1, Gwendoline J.D. Teske^1, Jan Aten^1, Fayyaz S. Sutterwala^2, Sandrine Florquin^1,3 and Jaklien C. Leemans^1

^1Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands; ^2Department of Internal Medicine, Inflammation Program, University of Iowa, Iowa City, Iowa, USA and ^3Department of Pathology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands

Western-diet

- Weight gain
- Insulin resistance
- Dyslipidemia

Renal pathology

- Renal steatosis
- Cholesterol & phospholipid accumulation
- Renal inflammation & fibrosis
- Microalbuminuria
Kidneys in Murine model of Metabolic syndrome

Nile Red positive vacuoles
Phospholipid accumulation
Causes of renal dysfunction in Metabolic syndrome??

- Glomerular hyperfiltration
- Excess reabsorption
- RAAS activation
- Glomerular and tubulointerstitial remodeling/injury
- Physical compression by adipose tissue
 - Hyperlipidemia
 - Renal lipotoxicity

Effects of LDL on tubular epithelial cells?
• Lipoproteins from plasma of human healthy donors.

Experimental Approach
Harmful effects of LDL on TECs

Lactate Dehydrogenase (LDH) Cytotoxicity Assay

Apoptosis AnnexinV staining

HK2 cells
LDL-induced phospholipidosis formation in TECs

HK2

ImmortoTEC

MDCK

Phospholipidosis: lysosomal accumulation of phospholipids.

LipidTOX Phospholipidosis Red Detection Kit (Life Technologies).

HK2 3 days oxLDL

ctr nLDL

MDCK

LDL

100x
Enlargement of the lysosomal compartment upon LDL

HK2 cells – day 3

LysoTracker Red
labeling and tracking acidic organelles in live cells

3 days

LysoTracker Red MFI

- Ctr LPDS
- nLDL
- oxLDL

* *
Enlargement of the lysosomal compartment upon LDL

HK2 cells – day 3/5

LysoTracker Red
labeling and tracking acidic organelles in live cells

5 days

LysoTracker Red MFI

 ctr nLDL oxLDL

Ctr LPDS nLDL oxLDL

3 days 5 days

LAMP-2

β-actin
Impaired lysosomal acidification upon LDL

HK2 cells

LysoSensor Green: Low pH-dependent fluorescent dye
LysoTracker Red: Labeling acidic organelles

FC
Lysosensor MFI / Lysotracker MFI

![Graph showing the ratio of MFI for different treatments over 3 days. Ctr LPDS, nLDL, and oxLDL conditions are compared.](image-url)
Impaired lysosomal acidification upon LDL

HK2 cells

LysoSensor Green: Low pH-dependent fluorescent dye

LysoTracker Red: Labeling acidic organelles

FC

Lysosensor MFI / Lysotracker MFI

- Ctr LPDS
- nLDL
- oxLDL
LDL-loading induces autophagy

LDL - loading induces autophagy.

WB

Ctr nLDL oxLDL

LC3B I
LC3B II
β-actin

ImmTEC

n/oxLDL

increase in LC3-II
decrease in LC3-I expression

HK2

LC3B I
LC3B II
β-actin
Autophagy as a protective mechanism

Without autophagy ⟷ More Apoptosis

ATG5 knockdown (Short hairpin RNA)
Impaired function after n/oxLDL treatment: Less absorption, ATP, integral mitochondria

Glucose uptake 2-NBDG

<table>
<thead>
<tr>
<th></th>
<th>MDCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctr LPDS</td>
<td>60 MFI FITC</td>
</tr>
<tr>
<td>nLDL</td>
<td>40 MFI FITC</td>
</tr>
<tr>
<td>oxLDL</td>
<td>50 MFI FITC</td>
</tr>
</tbody>
</table>

Intracellular ATP

<table>
<thead>
<tr>
<th></th>
<th>MDCK</th>
<th>HK2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctr LPDS</td>
<td>1.0 ATP/µg protein</td>
<td></td>
</tr>
<tr>
<td>nLDL</td>
<td>0.7 ATP/µg protein</td>
<td></td>
</tr>
<tr>
<td>oxLDL</td>
<td>0.5 ATP/µg protein</td>
<td></td>
</tr>
</tbody>
</table>

Mitochondrial damage

<table>
<thead>
<tr>
<th></th>
<th>HK2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctr LPDS</td>
<td>1.5 % Q3/ %Q2</td>
</tr>
<tr>
<td>nLDL</td>
<td>2.0 % Q3/ %Q2</td>
</tr>
<tr>
<td>oxLDL</td>
<td>3.0 % Q3/ %Q2</td>
</tr>
</tbody>
</table>

Oxidative stress - ROS

<table>
<thead>
<tr>
<th></th>
<th>5 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctr LPDS</td>
<td>3000 MFI FITC</td>
</tr>
<tr>
<td>nLDL</td>
<td>4000 MFI FITC</td>
</tr>
<tr>
<td>oxLDL</td>
<td>5000 MFI FITC</td>
</tr>
</tbody>
</table>

* indicates statistical significance.
Impaired function after n/oxLDL treatment: Improper response to EGF

Proliferation

- % cells in S+G2/M

Signaling activation

- EGFR
- PI3K

Cholesterol-rich microdomains

- Cholera toxin subunit B- FITC

Cholesterol-depletion

- Methyl-β-cyclodextrin (MβC)

Surface EGFR

- MFI FITC

- % cells in S+G2/M

HK2

5 days
Low-grade inflammation in Metabolic syndrome

Nlrp3 is a key modulator of diet-induced nephropathy and renal cholesterol accumulation

Pieter J. Bakker¹, Loes M. Butter¹, Lotte Kors¹, Gwendoline J.D. Teske¹, Jan Aten¹, Fayyaz S. Sutterwala², Sandrine Florquin¹,³ and Jaklien C. Leemans¹

¹Department of Pathology, Academical Medical Center, Amsterdam, The Netherlands; ²Department of Internal Medicine, Inflammation Program, University of Iowa, Iowa City, Iowa, USA and ³Department of Pathology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands

NLRP3 deficiency protects against
- renal steatosis
- cholesterol & phospholipid accumulation
- fibrosis
- macrophage influx
- microalbuminuria

NLRP3 mediates high fat diet-induced metabolic renal injury
Low-grade grade metabolic inflammation: NLRP3 inflammasome

- Activated in CKD & diabetic nephropathy (DN)
- Triggers onset of DN
- Mediates diet-induced nephropathy & renal cholesterol accumulation

Mori et al., *Nat. Med.*, 2011
Low-grade grade metabolic inflammation: NLRP3 inflammasome

NLRP3 Inflammasome

- Cytoplasmic **innate immune** multiprotein complex
 - Nod-like receptor protein 3 (NLRP3),
 - adaptor ASC,
 - pro-caspase-1

- **IL-1β** and **IL-18** maturation

dos Santos et al., Am. Journ. Physiol., 2012
NLRP3 activation in metabolic overloading

Silencing inflammasome components

Phospholipidosis

HK2

shRNA ASC

3 days

Ctr nLDL oxLDL

MIF PE

ASC + - + - + -
NLRP3 activation in metabolic overloading

Without NLRP3/ASC complex → Less Phospholipidosis

Phospholipidosis

shRNA NLRP3
sgRNA NLRP3

3 days

- Ctr
- nLDL
- oxLDL

MFI PE

NLRP3

+ - + - + - + -
Absence of NLRP3 prevent excessive intracellular lipid deposition in proximal tubules

Nile Red staining
Absence of NLRP3 attenuates Western-diet-induced lipid accumulation in kidneys

WT NLRP3 KO

Chol * *
PG * *
LPG *
BMP *
PC

PI *
SPA *
SPH *
LacCer *
Plasmalogens *

p=0.057
PROPOSED MECHANISM

Plasma membrane

LDL

Lysosome

Mitochondria

Cholesterol

EGF

GFs

Signaling

V-ATPase

LC3 II

Autophagy

Phospholipids

Cholesterol

Triacylglycerols

Apolipoprotein
PROPOSED MECHANISM

- LDL in Plasma membrane
- Cholesterol
- Lysosome
- Mitochondria
- NLRP3
- Autophagy
- LC3 II
- IL-1β
- EGF
- GFs
Acknowledgement

Department of Pathology, AMC, University of Amsterdam

Jeroen Bakker
Loes Butter
Nike Claessen
Peter Ochodnicky
Sandrine Florquin
Jakliien C. Leemans

Institute for Clinical Chemistry, University Hospital of Regensburg, Germany

Evelyn Orsó
Gerhard Liebisch
Gerd Schmitz